分析 首先判斷f(x)>0在定義域上恒成立;有 $lo{g}_{2}(x-{2}^{m}+\frac{5}{4})$>0,即x-2m+$\frac{5}{4}$>1恒成立,則x>2m-$\frac{1}{4}$恒成立.
解答 解:由題意知:f'(x)=cosx-$\frac{1}{2}$,當(dāng)0<x<1時(shí),f'(x)>0,即函數(shù)f(x)在(0,1)單調(diào)遞增,此時(shí)f(0)=0;
又不等式f(x)•$lo{g}_{2}(x-{2}^{m}+\frac{5}{4})$>0恒成立.
∴$lo{g}_{2}(x-{2}^{m}+\frac{5}{4})$>0,即x-2m+$\frac{5}{4}$>1恒成立,則x>2m-$\frac{1}{4}$恒成立,
∵0<x<1,
∴2m-$\frac{1}{4}$≤0⇒m≤-2.
故答案為:(-∞,-2]
點(diǎn)評(píng) 本題主要考查了函數(shù)的單調(diào)性與最值,不等式與對(duì)數(shù)的基礎(chǔ)運(yùn)算,屬于中等題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -9<m<25 | B. | 8<m<25 | C. | 16<m<25 | D. | m>8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com