分析 由題意ab+bc+ca=$\frac{2ab+2bc+2ac}{2}$分別利用基本不等式的性質即可求解.
解答 解:由題意:a2+b2+c2=1
那么:ab+bc+ca=$\frac{2ab+2bc+2ac}{2}$≤$\frac{1}{2}$(a2+b2+b2+c2+a2+c2)=$\frac{1}{2}×2$=1,當且僅當a=b=c時取等號.
又a2+b2+b2+2(ab+bc+ca)=(a+b+c)2≥0,當且僅當a=b=c時取等號.
∴1+2(ab+bc+ca)≥0,
∴ab+bc+ca≥-$\frac{1}{2}$
所以得ab+bc+ca的取值范圍是[$-\frac{1}{2},1$];
故答案為[$-\frac{1}{2},1$].
點評 本題主要考查了基本不等式的性質的變形運用能力,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | (-∞,$\frac{\sqrt{e}}{e}$-8] | B. | [$\frac{\sqrt{e}}{e}$-8,+∞) | C. | [$\sqrt{2}$,e) | D. | (-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,+∞) | B. | (1,+∞) | C. | [0,1) | D. | [0,1)∪(1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com