1.已知數(shù)列{bn}的前n項(xiàng)和Sn=n2+2n(n∈N+).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

分析 (1)由Sn=n2+2n(n∈N+).可得n=1時(shí),b1=3;n≥2時(shí),bn=Sn-Sn-1
(2)由(1)可得$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.利用“裂項(xiàng)求和方法”即可得出.

解答 解:(1)∵Sn=n2+2n(n∈N+).∴n=1時(shí),b1=3;n≥2時(shí),bn=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.
n=1時(shí)也成立,∴bn=2n+1.
(2)由(1)可得$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.
∴數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn=$\frac{1}{2}$$[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$
=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$,
∴${T_n}=\frac{n}{6n+9}$.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若A=(-1,3],B=[2,5),則A∪B=(-1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.(1)把“五進(jìn)制”數(shù)1234(5)轉(zhuǎn)化為“八進(jìn)制”數(shù),即1234(5)=302(8)
(2)總體由編號(hào)為01,02,…,49,50的50個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第9列數(shù)字0開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為43
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,四棱錐P-ABCD的底面ABCD是直角梯形,BC∥AD,AB⊥AD,AB=BC=$\frac{1}{3}$AD,PA⊥底面ABCD,過(guò)AB的平面交PD于AB,交PC于N(N與A不重合).
(Ⅰ)求證:MN∥BC;
(Ⅱ)如果BM⊥AC,求此時(shí)$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知m,n是兩條不同的直線,α、β是兩個(gè)不同的平面,若m?α,n?β,且α∥β,則下列結(jié)論一定正確的是( 。
A.m∥nB.m⊥nC.m、n異面D.m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若集合A={x||x|≤1},B={(x,y)|y=x2},則A∩B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.四邊形ABCD是正方形,PB⊥平面ABCD,MA∥PB,PB=AB=2MA.
(1)求直線BD與平面PCD所成的角;
(2)求平面PMD與平面ABCD所成角的大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知等差數(shù)列{an}中,${a_3}=\frac{π}{4}$,則cos(a1+a2+a6)=$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若一個(gè)圓錐的側(cè)面展開(kāi)圖是一個(gè)半徑為3cm,圓心角為60°的扇形,則該圓錐的體積為$\frac{\sqrt{35}}{24}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案