10.已知等差數(shù)列{an}中,${a_3}=\frac{π}{4}$,則cos(a1+a2+a6)=$-\frac{\sqrt{2}}{2}$.

分析 利用等差數(shù)列的性質(zhì)求出a1+a2+a6的值,然后求解三角函數(shù)值.

解答 解:等差數(shù)列{an}中,${a_3}=\frac{π}{4}$,則a1+a2+a6=a3-2d+a3-d+a3+3d=3a3=$\frac{3π}{4}$.
cos(a1+a2+a6)=cos$\frac{3π}{4}$=-$\frac{\sqrt{2}}{2}$.
故答案為:$-\frac{{\sqrt{2}}}{2}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的簡(jiǎn)單性質(zhì)的應(yīng)用,三角函數(shù)的值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知全集U=R,集合A={x|x2-6x+5<0},B=$\left\{{\left.x\right|\frac{x-2}{x-4}>0}\right\}$,C={x|3a-2<x<4a-3}求:
(1)A∩B,∁U(A∪B);
(2)若C⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{bn}的前n項(xiàng)和Sn=n2+2n(n∈N+).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={x|y=2x},B={x|$\sqrt{x}$≤2,x∈Z},則A∩B=(  )
A.(0,2]B.[0,4]C.{1,2,3,4}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.下面程序框圖輸出的結(jié)果是720.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{3}{2}{x^2}+2x+5$.
(1)求函數(shù)f(x)的圖象在點(diǎn)(3,f(3))處的切線方程.
(2)若曲線y=f(x)與y=2x+m有三個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=2alnx-x2
(1)若a=2,求函數(shù)f(x)圖象在點(diǎn)(1,f(1))處的切線方程;
(2)若a>0,判定函數(shù)f(x)在定義域上是否存在最大值或最小值,若存在,求出函數(shù)f(x)最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)($\sqrt{2}$,2),點(diǎn)(-2,$\frac{1}{4}$)在冪函數(shù)g(x)的圖象上,當(dāng)f(x)>g(x)時(shí),x的取值范圍為x<-1或x>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列說(shuō)法正確的是( 。
A.命題“?x∈R,使得x2>2x”的否定是“?x∈R,使得x2≤2x
B.“若a∈(0,1),則關(guān)于x的不等式ax2+2ax+1>0的解集為R”的逆命題為真
C.“若a、b不都是偶數(shù),則a+b不是偶數(shù)”的否命題為假
D.“已知a,b∈R若a+b≠3,則a≠2或b≠1”的逆否命題為真

查看答案和解析>>

同步練習(xí)冊(cè)答案