14.已知點(diǎn)M(x,y)滿足$\left\{\begin{array}{l}{x≥1}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}\right.$,當(dāng)a>0,b>0時(shí),若ax+by的最大值為12,則$\frac{4}{a}$+$\frac{3}$的最小值是4.

分析 由線性約束條件求出最優(yōu)解,代入線性目標(biāo)函數(shù)得到a+b=1,然后利用$\frac{4}{a}$+$\frac{3}$=($\frac{4}{a}$+$\frac{3}$)($\frac{a}{4}$+$\frac{3}$)展開整理,最后利用基本不等式求最小值.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:

由$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-2=0}\end{array}\right.$,解得:A(3,4),
顯然直線z=ax+by過A(3,4)時(shí)z取到最大值12,
此時(shí):3a+4b=12,即$\frac{a}{4}$+$\frac{3}$=1,
∴$\frac{4}{a}$+$\frac{3}$=($\frac{4}{a}$+$\frac{3}$)($\frac{a}{4}$+$\frac{3}$)=2+$\frac{4b}{3a}$+$\frac{3a}{4b}$≥2+2$\sqrt{\frac{4b}{3a}•\frac{3a}{4b}}$=4,
當(dāng)且僅當(dāng)3a=4b時(shí)“=”成立,
故答案為:4.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃,考查了利用基本不等式求最值,解答此題的關(guān)鍵是對(duì)“1”的靈活運(yùn)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知O為△ABC內(nèi)一點(diǎn),滿足$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,則△AOC與△ABC的面積之比為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知n∈N*,若$C_n^1+2C_n^2+{2^2}C_n^3+…+{2^{n-2}}C_n^{n-1}+{2^{n-1}}=40$,則n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在等比數(shù)列{an}中,1≤a1≤$\sqrt{2}$≤a2≤2,Sn是其前n項(xiàng)和,則S10的取值范圍為[10$\sqrt{2}$,1023].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2
(1)求(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$;
(2)求:|2$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某市共有初中學(xué)生270000人,其中初一年級(jí),初二年級(jí),初三年級(jí)學(xué)生人數(shù)分別為99000,90000,81000,為了解該市學(xué)生參加“開放性科學(xué)實(shí)驗(yàn)活動(dòng)”的意向,現(xiàn)采用分層抽樣的方法從中抽取一個(gè)容量為3000的樣本,那么應(yīng)該抽取初三年級(jí)的人數(shù)為( 。
A.800B.900C.1000D.1100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\frac{x}{{{x^2}+1}}$,關(guān)于f(x)的性質(zhì),有以下四個(gè)推斷:
①f(x)的定義域是(-∞,+∞);       ②f(x)的值域是$[-\frac{1}{2},\;\frac{1}{2}]$;
③f(x)是奇函數(shù);                   ④f(x)是區(qū)間(0,2)上的增函數(shù).
其中推斷正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.從集合A={2,3,-4}中隨機(jī)選取一個(gè)數(shù)記為k,則函數(shù)y=kx為單調(diào)遞增的概率為( 。
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)f(x)為一多項(xiàng)式,若(x+1)f(x)除以x2+x+1的余式為5x+3,則f(x)除以x2+x+1的余式為2x+5.

查看答案和解析>>

同步練習(xí)冊(cè)答案