【題目】已知函數(shù)f(x)=2x,x∈R.

(1)當m取何值時,方程|f(x)-2|=m有一個解?兩個解?

(2)若不等式[f(x)]2f(x)-m>0在R上恒成立,求m的取值范圍.

【答案】(1)當m=0或m≥2時,方程有一個解;當0<m<2時,方程有兩個解.(2)m的取值范圍為(-∞,0]。

【解析】

(1)有一個解、兩個解問題,轉化成F(x)=|f(x)-2|與G(x)=m有一個交點還是兩個交點問題;

(2)不等式[f(x)]2+f(x)-m>0在R上恒成立,即4x+2x-m>0在R上恒成立,利用參變量分離法,轉化成求4x+2x的取值范圍.

(1)令F(x)=|f(x)-2|=|2x-2|,G(x)=m,畫出F(x)的圖象如圖所示.

由圖象看出,當m=0或m≥2時,函數(shù)F(x)與G(x)的圖象只有一個交點,原方程有一個解;

當0<m<2時,函數(shù)F(x)與G(x)的圖象有兩個交點,原方程有兩個解.

(2)令f(x)=t(t>0),t=2x,則H(t)=t2t,(t>0)

因為H(t)= 在區(qū)間(0,+∞)上是增函數(shù),

所以H(t)>H(0)=0.

因此要使t2t>m在區(qū)間(0,+∞)上恒成立,

應有m≤0,

即所求m的取值范圍為(-∞,0].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列三角形數(shù)表:
假設第n行的第二個數(shù)為 ,
(1)歸納出an+1與an的關系式,并求出an的通項公式;
(2)設anbn=1(n≥2),求證:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若D′是平面α外一點,則下列命題正確的是(
A.過D′只能作一條直線與平面α相交
B.過D′可作無數(shù)條直線與平面α垂直
C.過D′只能作一條直線與平面α平行
D.過D′可作無數(shù)條直線與平面α平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù),),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知點是曲線上一點,若點到曲線的最小距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】各項均為正數(shù)的數(shù)列{bn}的前n項和為Sn , 且對任意正整數(shù)n,都有2Sn=bn(bn+1).
(1)求數(shù)列{bn}的通項公式;
(2)如果等比數(shù)列{an}共有2015項,其首項與公比均為2,在數(shù)列{an}的每相鄰兩項ak與ak+1之間插入k個(﹣1)kbk(k∈N*)后,得到一個新的數(shù)列{cn}.求數(shù)列{cn}中所有項的和;
(3)如果存在n∈N* , 使不等式 成立,求實數(shù)λ的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,,均與底面垂直,且為直角梯形,,,,,分別為線段的中點,為線段上任意一點.

(1)證明:平面.

(2)若,證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線x﹣9y﹣8=0與曲線C:y=x3﹣px2+3x相交于A,B,且曲線C在A,B處的切線平行,則實數(shù)p的值為(
A.4
B.4或﹣3
C.﹣3或﹣1
D.﹣3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某二手交易市場對某型號的二手汽車的使用年數(shù))與銷售價格(單位:萬元/輛)進行整理,得到如下的對應數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

銷售價格

16

13

9.5

7

4.5

(I)試求關于的回歸直線方程.

(參考公式:,

(II)已知每輛該型號汽車的收購價格為萬元,根據(jù)(I)中所求的回歸方程,預測為何值時,銷售一輛該型號汽車所獲得的利潤最大?(利潤=銷售價格-收購價格)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市隨機抽取一年(365天)內100天的空氣質量指數(shù)API的監(jiān)測數(shù)據(jù),結果統(tǒng)計如下:

API

[0,100]

(100,200]

(200,300]

>300

空氣質量

優(yōu)良

輕污染

中度污染

重度污染

天數(shù)

17

45

18

20

記某企業(yè)每天由空氣污染造成的經濟損失S(單位:元),空氣質量指數(shù)API.當時,企業(yè)沒有造成經濟損失;當對企業(yè)造成經濟損失成直線模型(當時造成的經濟損失為,當時,造成的經濟損失;當時造成的經濟損失為2000元;

(1)試寫出的表達式;

(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有12天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有99%的把握認為該市本年空氣重度污染與供暖有關?

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

P(k2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案