6.已知拋物線y2=8x的準(zhǔn)線過(guò)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個(gè)焦點(diǎn),且雙曲線的一條漸近線方程為$\sqrt{3}$x+y=0,則該雙曲線的方程為( 。
A.$\frac{x^2}{3}$-y2=1B.x2-$\frac{y^2}{3}$=1C.$\frac{x^2}{6}$-$\frac{y^2}{2}$=1D.$\frac{x^2}{2}$-$\frac{y^2}{6}$=1

分析 利用拋物線的標(biāo)準(zhǔn)方程y2=8x,可得準(zhǔn)線方程為x=-2.由題意可得雙曲線的一個(gè)焦點(diǎn)為(-2,0),即可得到c=2.再利用雙曲線的一條漸近線方程為$\sqrt{3}$x+y=0,得到a=1,再利用b2=c2-a2可得b2.進(jìn)而得到雙曲線的方程.

解答 解:由拋物線y2=8x,可得準(zhǔn)線方程為x=-2.
由題意可得雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個(gè)焦點(diǎn)為(-2,0),∴c=2.
又雙曲線的一條漸近線方程為$\sqrt{3}$x+y=0,
∴$\frac{a}$=$\sqrt{3}$,得到a=1,∴b2=c2-a2=3.
∴雙曲線的方程為x2-$\frac{y^2}{3}$=1.
故選:B.

點(diǎn)評(píng) 熟練掌握雙曲線拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知正項(xiàng)數(shù)列{an}滿足:Sn2=a13+a23+…+an3(n∈N*),其中Sn為數(shù)列{an}的前n項(xiàng)的和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:$\frac{2n+1}{(n+1)\sqrt{n+1}}$<($\frac{1}{{a}_{1}}$)${\;}^{\frac{3}{2}}$+($\frac{1}{{a}_{2}}$)${\;}^{\frac{3}{2}}$+($\frac{1}{{a}_{3}}$)${\;}^{\frac{3}{2}}$+…+($\frac{1}{{a}_{2n+1}}$)${\;}^{\frac{3}{2}}$<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)=x3+4x+5在x=1處的切線方程為7x-y+3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=4和橢圓C:$\frac{{x}^{2}}{4}$+y2=1,動(dòng)直線l過(guò)點(diǎn)M(0,$\frac{3}{2}$)且與圓O交于A,B兩點(diǎn),自A,B分別作x軸的垂線交橢圓C于A1,B1,A1與A,B1與B不在x軸的異側(cè).
(1)請(qǐng)?zhí)骄浚褐本A1B1是否過(guò)定點(diǎn)?
(2)若直線AB和A1B1相交,證明交點(diǎn)在x軸上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為2$\sqrt{5}$,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4y的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)橢圓C的右焦點(diǎn)F作直線l交橢圓C于A,B兩點(diǎn),交y軸于M點(diǎn),若$\overrightarrow{MA}$-λ1$\overrightarrow{AF}$=$\overrightarrow{0}$,$\overrightarrow{MB}$-λ2$\overrightarrow{BF}$=$\overrightarrow{0}$,求證:$\frac{1}{2}$(λ12)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.復(fù)數(shù)$\frac{3i-2}{i-1}$(i是虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=$\frac{1}{{3}^{x}+1}$,則f(log23)+f(log4$\frac{1}{9}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知等差數(shù)列{an}中a2=5,前4項(xiàng)和為S4=28;
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2n,Tn=anb1+an-1b2+an-2b3+…+a2bn-1+a1bn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l:y=-x+1與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0))相交于不同的兩點(diǎn)A、B,且線段AB的中點(diǎn)P的坐標(biāo)為($\frac{2}{3}$,$\frac{1}{3}$)
(1)求橢圓C離心率;
(2)設(shè)O為坐標(biāo)原點(diǎn),且2|OP|=|AB|,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案