【題目】已知甲、乙兩車間的月產(chǎn)值在2017年1月份相同,甲車間以后每個(gè)月比前一個(gè)月增加相同的產(chǎn)值,乙車間以后每個(gè)月比前一個(gè)月增加產(chǎn)值的百分比相同.到2017年7月份發(fā)現(xiàn)兩車間的月產(chǎn)值又相同,比較甲、乙兩個(gè)車間2017年4月份月產(chǎn)值的大小,則( )
A. 甲車間大于乙車間 B. 甲車間等于乙車間
C. 甲車間小于乙車間 D. 不確定
【答案】A
【解析】
設(shè)甲車間以后每個(gè)月比前一個(gè)月增加相同的產(chǎn)值a,乙車間每個(gè)月比前一個(gè)月增加產(chǎn)值的百分比為x,甲、乙兩車間的月產(chǎn)值在2017年1月份均為m,則由題意得m+6a=m×(1+x)6.①
4月份甲車間的月產(chǎn)值為m+3a,4月份乙車間的月產(chǎn)值為m×(1+x)3,
由①知,(1+x)6=1+,即4月份乙車間的月產(chǎn)值為m= ,∵(m+3a)2-(m2+6ma)=9a2>0,∴m+3a>,即4月份甲車間的月產(chǎn)值大于乙車間的月產(chǎn)值.
故答案為:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列命題中:
①存在一個(gè)平面與正方體的12條棱所成的角都相等;
②存在一個(gè)平面與正方體的6個(gè)面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個(gè)面所成的角都相等.
其中真命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率直方分布圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)從成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,該2人中成績(jī)?cè)?0分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)中,設(shè)橢圓:的左右兩個(gè)焦點(diǎn)分別為,,過(guò)右焦點(diǎn)且與軸垂直的直線與橢圓相交,其中一個(gè)交點(diǎn)為.
(1)求橢圓的方程;
(2)已知,經(jīng)過(guò)點(diǎn)且斜率為,直線與橢圓有兩個(gè)不同的和交點(diǎn),請(qǐng)問(wèn)是否存在常數(shù),使得向量與共線?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),( ),圓C的參數(shù)方程 (θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個(gè)從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測(cè)算該項(xiàng)目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:
,且每處理一噸生活垃圾,可得到能利用的生物柴油價(jià)值為200元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.
(1)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?
(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 | 1 | ﹣0.8 |
0.1 | ﹣0.3 | ﹣1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
1 | 1 | c |
a | b | ﹣1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點(diǎn)F,F(xiàn)E∥CD,交PD于點(diǎn)E.
(1)證明:CF⊥平面ADF;
(2)求二面角D﹣AF﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinxcos(x﹣ )+cos2x﹣ .
(1)求函數(shù)f(x)的最大值,并寫(xiě)出f(x)取最大值x時(shí)的取值集合;
(2)若f(x0)= ,x0∈[ , ],求cos2x0的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com