【題目】已知函數(shù)f(x)=sinxcos(x﹣ )+cos2x﹣ .
(1)求函數(shù)f(x)的最大值,并寫出f(x)取最大值x時的取值集合;
(2)若f(x0)= ,x0∈[ , ],求cos2x0的值.
【答案】
(1)解:f(x)=sinxcos(x﹣ )+cos2x﹣
=sinx( cosx+ sinx)+ ﹣
= sin2x+ + cos2x
= sin(2x+ )+ ,
當(dāng)2x+ =2kπ+ (k∈Z),即x=kπ+ (k∈Z)時,f(x)取得最大值 .
函數(shù)f(x)的最大值時x的取值集合為{x|x=kπ+ (k∈Z)}
(2)解:若f(x0)= ,即 sin(2x0+ )+ = ,
整理得:sin(2x0+ )= ,
∵x0∈[ , ],
∴2x0+ ∈[ , ],
∴cos(2x0+ )=﹣ ,
∴cos2x0=cos[(2x0+ )﹣ ]=cos(2x0+ )cos +sin(2x0+ )si'n =﹣ × + × =
【解析】(1)利用兩角和與差的正弦、余弦公式可化簡f(x)=sinxcos(x﹣ )+cos2x﹣ = sin(2x+ )+ ,再利用正弦函數(shù)的性質(zhì)即可求得函數(shù)f(x)的最大值及f(x)取最大值x時的取值集合;(2)x0∈[ , ]2x0+ ∈[ , ],故可求得cos(2x0+ )=﹣ ,利用兩角差的余弦cos2x0=cos[(2x0+ )﹣ ]即可求得cos2x0的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩車間的月產(chǎn)值在2017年1月份相同,甲車間以后每個月比前一個月增加相同的產(chǎn)值,乙車間以后每個月比前一個月增加產(chǎn)值的百分比相同.到2017年7月份發(fā)現(xiàn)兩車間的月產(chǎn)值又相同,比較甲、乙兩個車間2017年4月份月產(chǎn)值的大小,則( )
A. 甲車間大于乙車間 B. 甲車間等于乙車間
C. 甲車間小于乙車間 D. 不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)在5秒內(nèi)的任何時刻,兩條不相關(guān)的短信機會均等地進(jìn)入同一部手機,若這兩條短信進(jìn)入手機的時間之差小于2秒,手機就會受到干擾,則手機受到干擾的概率為_________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲廠以x千克/小時的速度運輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得利潤是100(5x+1﹣ )元.
(1)寫出生產(chǎn)該產(chǎn)品t(t≥0)小時可獲得利潤的表達(dá)式;
(2)要使生產(chǎn)該產(chǎn)品2 小時獲得的利潤不低于3000元,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點坐標(biāo)為,,過垂直于長軸的直線交橢圓于、兩點,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)過的直線與橢圓交于不同的兩點、,則的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點P(1,f(1))處的切線方程為y=3x+1,y=f(x)在x=-2處有極值.
(1)求f(x)的解析式.
(2)求y=f(x)在[-3,1]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時,f(x)=( )1﹣x , 則
①2是函數(shù)f(x)的一個周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個對稱軸;
⑤當(dāng)x∈(3,4)時,f(x)=( )x﹣3 .
其中所有正確命題的序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com