【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率直方分布圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求圖中x的值;
(2)從成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,該2人中成績(jī)?cè)?0分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

【答案】
(1)解:由30×0.006+10×0.01+10×0.054+10x=1,得x=0.018
(2)解:由題意知道:不低于80分的學(xué)生有12人,90分以上的學(xué)生有3人

隨機(jī)變量ξ的可能取值有0,1,2


【解析】(1)根據(jù)所以概率的和為1,即所求矩形的面積和為1,建立等式關(guān)系,可求出所求;(2)不低于80分的學(xué)生有12人,90分以上的學(xué)生有3人,則隨機(jī)變量ξ的可能取值有0,1,2,然后根據(jù)古典概型的概率公式求出相應(yīng)的概率,從而可求出數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)的參數(shù)方程是為參數(shù)),曲線(xiàn)的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線(xiàn),的參數(shù)方程化為普通方程;

(Ⅱ)求曲線(xiàn)上的點(diǎn)到曲線(xiàn)的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信搶紅包”自2015年以來(lái)異;鸨,在某個(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,若所發(fā)紅包的總金額為8元,被隨機(jī)分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶?zhuān)咳酥荒軗屢淮,則甲、乙二人搶到的金額之和不低于3元的概率是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿(mǎn)足f(x)=f′(1)ex1﹣f(0)x+ x2;
(1)求f(x)的解析式及單調(diào)區(qū)間;
(2)若 ,求(a+1)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿(mǎn)足an+1+(﹣1)nan=2n﹣1,則{an}的前60項(xiàng)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 滿(mǎn)足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】受轎車(chē)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)產(chǎn)生每輛轎車(chē)的利潤(rùn)與該轎車(chē)首次出現(xiàn)故障的時(shí)間有關(guān),某轎車(chē)制造廠(chǎng)生產(chǎn)甲、乙兩種品牌轎車(chē),保修期均為2年,現(xiàn)從該廠(chǎng)已售出的兩種品牌轎車(chē)中隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌

首次出現(xiàn)故障時(shí)間x(年)

0<x<1

1<x≤2

x>2

0<x≤2

x>2

轎車(chē)數(shù)量(輛)

2

3

45

5

45

每輛利潤(rùn)(萬(wàn)元)

1

2

3

1.8

2.9

將頻率視為概率,解答下列問(wèn)題:
(Ⅰ)從該廠(chǎng)生產(chǎn)的甲品牌轎車(chē)中隨機(jī)抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(Ⅱ)若該廠(chǎng)生產(chǎn)的轎車(chē)均能售出,記住生產(chǎn)一輛甲品牌轎車(chē)的利潤(rùn)為X1 , 生產(chǎn)一輛乙品牌轎車(chē)的利潤(rùn)為X2 , 分別求X1 , X2的分布列;
(Ⅲ)該廠(chǎng)預(yù)計(jì)今后這兩種品牌轎車(chē)銷(xiāo)量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌轎車(chē),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種品牌的轎車(chē)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩車(chē)間的月產(chǎn)值在2017年1月份相同,甲車(chē)間以后每個(gè)月比前一個(gè)月增加相同的產(chǎn)值,乙車(chē)間以后每個(gè)月比前一個(gè)月增加產(chǎn)值的百分比相同.到2017年7月份發(fā)現(xiàn)兩車(chē)間的月產(chǎn)值又相同,比較甲、乙兩個(gè)車(chē)間2017年4月份月產(chǎn)值的大小,則(  )

A. 甲車(chē)間大于乙車(chē)間 B. 甲車(chē)間等于乙車(chē)間

C. 甲車(chē)間小于乙車(chē)間 D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)在5秒內(nèi)的任何時(shí)刻,兩條不相關(guān)的短信機(jī)會(huì)均等地進(jìn)入同一部手機(jī),若這兩條短信進(jìn)入手機(jī)的時(shí)間之差小于2秒,手機(jī)就會(huì)受到干擾,則手機(jī)受到干擾的概率為_________________

查看答案和解析>>

同步練習(xí)冊(cè)答案