14.使命題“存在x0∈[1,2],x02-a≤0”為真命題的一個充分不必要條件為( 。
A.a≥2B.a≤2C.a≥1D.a≤1

分析 存在x0∈[1,2],x02-a≤0,可得a≥$({x}_{0}^{2})_{min}$,即可判斷出結(jié)論.

解答 解:存在x0∈[1,2],x02-a≤0,可得a≥$({x}_{0}^{2})_{min}$,∴a≥1.
∴命題“存在x0∈[1,2],x02-a≤0”為真命題的一個充分不必要條件為a≥2.
故選:A.

點評 本題考查了等價轉(zhuǎn)化方法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.(1)計算:${i^{2010}}+{(\sqrt{2}+\sqrt{2}i)^2}-{({\frac{{\sqrt{2}}}{1-i}})^4}$
(2)已知函數(shù)f(x)滿足$f(x)=f'(1){e^{x-1}}-f(0)x+\frac{1}{2}{x^2}$;求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=(1-ax)1n(1+x)-x.
(1)當a=-1時,求函數(shù)f(x)在x=1處的切線方程;
(2)對任意的x∈(0,1],f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知命題p:f(x)=x+$\frac{a}{x}$在區(qū)間[1,+∞)上是增函數(shù);命題q:f(x)=x3+ax2+3x+1在R上有極值.若命題“p∨q”為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知x、y的取值如表:
x0134
y2.24.34.86.7
若x、y具有線性相關(guān)關(guān)系,且回歸方程為$\stackrel{∧}{y}$=0.95x+a,則a的值為2.6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知圓C:x2+y2+ax+2y+a2=0和定點A(1,2),要使過點A的圓C的切線有且僅有兩條,則實數(shù)a的取值范圍是( 。
A.(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)C.(-∞,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=2(x+1)和g(x)=x+lnx,點A和點B分別在f(x)圖象上和g(x)圖象上,且始終保持兩點的縱坐標相等,則A,B兩點的最小距離是( 。
A.$\frac{1}{2}$B.$\frac{5}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,A=60°,a=3,則△ABC的周長為( 。
A.4$\sqrt{3}$sin(B+60°)+3B.4$\sqrt{3}$sin(B+30°)+3C.6sin(B+60°)+3D.6sin(B+30°)+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù) f(x)=log3$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$的值域為[0,1],求b和c的值.

查看答案和解析>>

同步練習冊答案