1.已知二項式(x5-$\frac{1}{x}$)n的展開式中含有非零常數(shù)項,則正整數(shù)n的最小值為6.

分析 利用二項式展開式的通項公式中x項的指數(shù)等于0,求出n與r的關(guān)系,再結(jié)合n為正整數(shù),即可得出答案.

解答 解:由二項式系數(shù)的性質(zhì),可得其展開式的通項公式為
Tr+1=Cnr(x5n-r(-$\frac{1}{x}$)r=Cnr(-1)r(x)5n-6r,
根據(jù)題意,其展開式中有非零常數(shù)項,則有5n-6r=0,
解得r=$\frac{5n}{6}$,即5n為6的整數(shù)倍,且n為正整數(shù);
所以n的最小值為6.
故答案為:6.

點評 本題考查了二項式系數(shù)的性質(zhì)與應用問題,解題的關(guān)鍵是牢記二項式的通項公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知Sn是數(shù)列{an}的前n項和,a1=2,且4Sn=an•an+1,數(shù)列{bn}中,b1=$\frac{1}{4}$,且bn+1=$\frac{n_{n}}{(n+1)-_{n}}$,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設cn=$\frac{{a}_{n}}{{2}^{\frac{1}{3_{n}}+\frac{2}{3}}}$(n∈N*),求{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(2,3),向量$\overrightarrow$=(x,-2),且$\overrightarrow{a}$與2$\overrightarrow{a}$-$\overrightarrow$共線,則實數(shù)x的值為-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.給出下列四個命題:
①若命題“若¬p則q”為真命題,則命題“若¬q則p”也是真命題
②直線a∥平面α的充要條件是:直線a?平面α
③“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件;
④若命題p:“?x∈R,x2-x-1>0“,則命題p的否定為:“?x∈R,x2-x-1≤0”
其中真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.由不等式$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤1\end{array}\right.$確定的平面區(qū)域記為Ω1,不等式$\left\{\begin{array}{l}{(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{1}{2}\;\;\\ x≥y\\ x+y≥1\\ \;\;\end{array}\right.$確定的平面區(qū)域記為Ω2,在Ω1中隨機取一點,則該點恰好在Ω2內(nèi)的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)y=x2cosx的部分圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若復數(shù)z滿足z(2-i)=10+5i(i為虛數(shù)單位),則|z|=( 。
A.25B.10C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在直四棱柱ABCD-A1B1C1D1中,∠BAD=60°,AB=BD,BC=CD.
(1)求證:平面ACC1A1⊥平面A1BD;
(2)當BC⊥CD時,直線BC與平面A1BD所成的角能否為45°?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的單調(diào)遞增區(qū)間是( 。
A.[-$\frac{π}{3}$,$\frac{5π}{3}$]B.[-2π,-$\frac{π}{3}$]C.[$\frac{5π}{3}$,2π]D.[-2π,-$\frac{π}{3}$]和[$\frac{5π}{3}$,2π]

查看答案和解析>>

同步練習冊答案