14.為了研究高中學(xué)生對鄉(xiāng)村音樂的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗,經(jīng)計算k2=8.01,附表如下:
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
參照附表,得到的正確的結(jié)論是( 。
A.有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”
B.有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別無關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別無關(guān)”

分析 由題目所給數(shù)據(jù),結(jié)合獨(dú)立檢驗的規(guī)律可作出判斷.

解答 解:∵k2=8.01>6.635,
∴在犯錯誤概率不超過0.1的前提下認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”,
即有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”.
故選:A

點(diǎn)評 本題考查獨(dú)立檢驗,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在直角三角形ABC中,直角頂點(diǎn)為C,其中∠B=60°,在角ACB內(nèi)部任作一條射線CM,與線段AB交于點(diǎn)M,滿足AM<AC的概率為$\frac{5}{6}$,則滿足BC<AM<AC的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=|x2-2x|.
(1)先完成表格,再在坐標(biāo)軸上畫出函數(shù)f(x)在區(qū)間[-2,3]上的圖象;
(2)求函數(shù)g(x)=f(x)+2在區(qū)間[-2,3]上的值域.
x-2-10123
f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)數(shù)列{an}的前n項和為Sn,關(guān)于數(shù)列{an},下列命題正確的序號是①②.
①若數(shù)列{an}既是等差數(shù)列又是等比數(shù)列,則an=an+1;
②若${S_n}=a{n^2}+bn({a,b∈R})$,則數(shù)列{an}是等差數(shù)列;
③若${S_n}=1+{({-1})^n}$,則數(shù)列{an}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=3,an+1•an-2•an+1=0 (n∈N*).
(1)求$\frac{1}{{a}_{2}-1}$,$\frac{1}{{a}_{3}-1}$,$\frac{1}{{a}_{4}-1}$的值;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在數(shù)列{an}中,a1=1,an=1-$\frac{1}{{a}_{n-1}+1}$(n≥2),則a3=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知S是△ABC所在平面外一點(diǎn),D是SC的中點(diǎn),若$\overrightarrow{BD}$=x$\overrightarrow{SA}+y\overrightarrow{SB}+z\overrightarrow{SC}$,則x+y+z=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合M={x|-1≤x≤1},N={x|$\frac{x}{x-1}$≤0},則M∩N=( 。
A.{x|0≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)在復(fù)平面內(nèi)復(fù)數(shù)z1=1+2i,z2=$\sqrt{2}$+$\sqrt{3}$i,z3=$\sqrt{3}$-$\sqrt{2}$i,z4=-2+i對應(yīng)的四點(diǎn)是否在同一個圓上,并證明你的結(jié)論;
(2)實數(shù)m取什么值時,復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點(diǎn)位于第四象限.

查看答案和解析>>

同步練習(xí)冊答案