精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,在正方體中,點是棱上的一個動點,平面交棱于點給出下列命題:

①存在點,使得//平面

對于任意的點,平面平面

存在點,使得平面;

④對于任意的點,四棱錐的體積均不變.

其中正確命題的序號是______.(寫出所有正確命題的序號).

【答案】②④

【解析】為棱上的中點時,此時也為棱 上的中點,此時;滿足//平面,∴①正確.

平面,∴不可能存在點,使得 ,∴②錯誤.
③連結平面,而平面,∴平面平面,成立,∴③正確.
四棱錐B1-BED1F的體積等于 設正方體的棱長為1,
∵無論在何點,三角形的面積為 為定值,三棱錐的高,保持不變.三角形的面積為為定值,三棱錐的高為,保持不變.
∴三棱錐和三棱錐體積為定值,
即四棱錐的體積等于 為定值,∴④正確.
故答案為:①③④

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(Ⅰ)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列;
(Ⅱ)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數學期望達到最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據某水文觀測點的歷史統(tǒng)計數據,得到某河流水位X(單位:米)的頻率分布直方圖如圖:將河流水位在以上6段的頻率作為相應段的概率,并假設每年河流水位互不影響.
(1)求未來三年,至多有1年河流水位X∈[27,31)的概率(結果用分數表示);
(2)該河流對沿河A企業(yè)影響如下:當X∈[23,27)時,不會造成影響;當X∈[27,31)時,損失10000元;當X∈[31,35)時,損失60000元,為減少損失,現有種應對方案: 方案一:防御35米的最高水位,需要工程費用3800元;
方案二:防御不超過31米的水位,需要工程費用2000元;
方案三:不采取措施;
試比較哪種方案較好,并請說理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,CA=CB,側面ABB1A1是邊長為2的正方形,點E,F分別在線段AA1、A1B1上,且AE= ,A1F= ,CE⊥EF.
(Ⅰ)證明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直線AC1與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】的內角的對邊分別為,已知

(1)求;

(2)若,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設a>0,b>0,若關于x,y的方程組 無解,則a+b的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值為8.
(1)確定常數k,求an
(2)求數列 的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

  1. (2015·四川)如果函數f(x)=(m-2)x2+(n-8)x+1(m≥0, n≥0)在區(qū)間[, 2]上單調遞減,則mn的最大值為( )


A.16
B.18
C.25
D.

查看答案和解析>>

同步練習冊答案