分析 (Ⅰ)當(dāng)a=5時(shí),f(x)=2lnx+x2-5x.求導(dǎo),利用導(dǎo)數(shù)的正負(fù)求f(x)的單調(diào)區(qū)間;
(Ⅱ)由題意可知:k=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>1,$\frac{[f({x}_{2})-{x}_{2}]-[f({x}_{1})-{x}_{1}]}{{x}_{2}-{x}_{1}}$>0,構(gòu)造函數(shù),確定函數(shù)的單調(diào)性,分離參數(shù),即可求實(shí)數(shù)a的取值范圍;
(Ⅲ)f(x1)-f(x2)=(2lnx1+x12-ax1)-(2lnx2+x22-ax2)=$\frac{1}{{{x}_{1}}^{2}}$-x12+2lnx12,令x12=x,則0<x<$\frac{1}{{e}^{2}}$,g(x)=$\frac{1}{x}$-x-2lnx,求導(dǎo),確定函數(shù)的單調(diào)性,求最值,即可求實(shí)數(shù)m的取值范圍.
解答 解:(Ⅰ)當(dāng)a=5時(shí),f(x)=2lnx+x2-5x.求導(dǎo),
f′(x)=$\frac{2{x}^{2}-5x+2}{x}$=$\frac{(2x-1)(x-2)}{x}$,(x>0),
令f′(x)>0,解得:x>2或0<x<$\frac{1}{2}$,
令f′(x)<0,解得:$\frac{1}{2}$<x<2,
∴f(x)的單調(diào)遞增區(qū)間(0,$\frac{1}{2}$),(2,+∞);f(x)的單調(diào)遞減區(qū)間($\frac{1}{2}$,2);
(Ⅱ)由題意可知:k=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>1,∴$\frac{[f({x}_{2})-{x}_{2}]-[f({x}_{1})-{x}_{1}]}{{x}_{2}-{x}_{1}}$>0,
令g(x)=f(x)-x,則g(x)在(0,+∞)上單調(diào)遞增,
∴g′(x)=f′(x)-1≥0,
∴$\frac{2{x}^{2}-ax+2}{x}$-1≥0在(0,+∞)上恒成立,
∴a≤2x+$\frac{2}{x}$-1在(0,+∞)上恒成立,
∵2x+$\frac{2}{x}$≥4,x=1時(shí)取等號(hào),
∴a≤3;
(Ⅲ)∵x1+x2=$\frac{a}{2}$,x1x2=1,∴a=2(x1+x2),x2=$\frac{1}{{x}_{1}}$,
∴f(x1)-f(x2)=(2lnx1+x12-ax1)-(2lnx2+x22-ax2)=$\frac{1}{{{x}_{1}}^{2}}$-x12+2lnx12,
令x12=x,則0<x<$\frac{1}{{e}^{2}}$,g(x)=$\frac{1}{x}$-x-2lnx,
∴g′(x)=-$\frac{(x-1)^{2}}{{x}^{2}}$<0,
∴g(x)在(0,$\frac{1}{{e}^{2}}$)上單調(diào)遞減,
∴g(x)>g($\frac{1}{{e}^{2}}$)=${e}^{2}-\frac{1}{{e}^{2}}$-4,
∴m≤${e}^{2}-\frac{1}{{e}^{2}}$-4.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查函數(shù)的單調(diào)性與最值,正確構(gòu)造函數(shù),合理求導(dǎo)是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4種 | B. | 10種 | C. | 12種 | D. | 22種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
第t天 | 10 | 17 | 21 | 30 |
Q(件) | 180 | 152 | 136 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com