【題目】已知函數(shù)f(x)=2x

(1)試求函數(shù)F(x)=f(x)+f(2x),x∈(﹣∞,0]的最大值;

(2)若存在x∈(﹣∞,0),使|af(x)﹣f(2x)|>1成立,試求a的取值范圍;

(3)當a0,且x∈[0,15]時,不等式f(x+1)≤f[(2x+a)2]恒成立,求a的取值范圍.

【答案】(1)2 ; (2)a<0,或a>2; .(3)a≥1.

【解析】

(1)把f(x)代入到F(x)中化簡得到F(x)的解析式求出F(x)的最大值即可;

(2)可設(shè)2x=t,存在t(0,1)使得|t2﹣at|>1,討論求出解集,讓a大于其最小,小于其最大即可得到a的取值范圍;

(3)不等式f(x+1)≤f[(2x+a)2]恒成立即為恒成立即要,根據(jù)二次函數(shù)求最值的方法求出最值即可列出關(guān)于a的不等式,求出解集即可

(1)∵x∈(﹣∞,0],F(xiàn)(x)=f(x)+f(2x)=2x+4x,令2x=t,(0<t≤1),

即有F(x)=t2+t= 單調(diào)遞增,

(2)令2x=t,則存在t(0,1)使得|t2﹣at|>1

所以存在t(0,1)使得t2﹣at>1,或t2﹣at<﹣1.

即存在t(0,1)使得,∴a<0,或a>2;

(3)由f(x+1)≤f[(2x+a)2]得x+1≤(2x+a)2恒成立

因為a0,且x∈[0,15],所以問題即為恒成立,

設(shè)m(x)=,∴

所以,當t=1時,m(x)max=1,∴a≥1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系;
(1)設(shè)M(x,y)是圓C上的動點,求m=3x+4y的取值范圍;
(2)求圓C的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)上購物逐步走進大學生活,某大學學生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商場購物,且參加者必須從淘寶和京東商城選擇一家購物.
(1)求這4人中恰有1人去淘寶網(wǎng)購物的概率;
(2)用ξ、η分別表示這4人中去淘寶網(wǎng)和京東商城購物的人數(shù),記X=ξη,求隨機變量X的分布列與數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解湖南各景點在大眾中的熟知度,隨機對15~65歲的人群抽樣了n人,回答問題“湖南省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如下圖表.

組號

分組

回答正確的人數(shù)

回答正確的人數(shù)
占本組的頻率

第1組

[15,25)

a

0.5

第2組

[25,35)

18

x

第3組

[35,45)

b

0.9

第4組

[45,55)

9

0.36

第5組

[55,65]

3

y


(1)分別求出a,b,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的人中恰好沒有第3組人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣mx(m∈R).
(1)若曲線y=f(x)過點P(1,﹣1),求曲線y=f(x)在點P的切線方程;
(2)若f(x)≤0恒成立求m的取值范圍;
(3)求函數(shù)f(x)在區(qū)間[1,e]上最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)頂點在原點,焦點在軸上的拋物線過點,過作拋物線的動弦, ,并設(shè)它們的斜率分別為, .

(Ⅰ)求拋物線的方程;

(),求證:直線的斜率為定值,并求出其值;

III)若,求證:直線恒過定點,并求出其坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題方程表示雙曲線;命題不等式的解集是. 為假 為真,的取值范圍.

【答案】

【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.

試題解析:

,

范圍為

型】解答
結(jié)束】
18

【題目】如圖,設(shè)是圓上的動點,軸上的投影 上一點,.

1)當在圓上運動時,求點的軌跡的方程;

2)求過點且斜率為的直線被所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線 的極坐標方程是 ,以極點為原點 ,極軸為 軸正半軸(兩坐標系取相同的單位長度)的直角坐標系 中,曲線 的參數(shù)方程為: 為參數(shù)).
(1)求曲線 的直角坐標方程與曲線 的普通方程;
(2)將曲線 經(jīng)過伸縮變換 后得到曲線 ,若 分別是曲線 和曲線 上的動點,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1 + =1(a>b>0)的離心率為 ,P(﹣2,1)是C1上一點.
(1)求橢圓C1的方程;
(2)設(shè)A,B,Q是P分別關(guān)于兩坐標軸及坐標原點的對稱點,平行于AB的直線l交C1于異于P、Q的兩點C,D,點C關(guān)于原點的對稱點為E.證明:直線PD、PE與y軸圍成的三角形是等腰三角形.

查看答案和解析>>

同步練習冊答案