設(shè)函數(shù)f(x)=
1,1≤x≤2
x-1,2<x≤3
,g(x)=f(x)-ax,x∈[1,3],其中a∈R,記函數(shù)g(x)的最大值與最小值的差為h(a).
(1)求函數(shù)h(a)的解析式;
(2)畫出函數(shù)y=h(x)的圖象并指出h(x)的最小值.
考點(diǎn):函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)先化簡g(x)的解析式,當(dāng)a<0時(shí),當(dāng)a>1時(shí),當(dāng)0≤a≤1時(shí),分別求出最大值與最小值的差為h(a).
(2 )畫出y=h(x)的圖象,數(shù)形結(jié)合,求出 y=h(x)的最小值.
解答: 解:(1)g(x)=
1-ax,1≤x≤2
(1-a)x,2<x≤3
,
①當(dāng)a<0時(shí),函數(shù)g(x)是[1,3]增函數(shù),此時(shí),
g(x)max=g(3)=2-3a,
g(x)min=g(1)=1-a,所以h(a)=1-2a.
②當(dāng)a>1時(shí),函數(shù)g(x)是[1,3]減函數(shù),此時(shí),
g(x)min=g(3)=2-3a,
g(x)max=g(1)=1-a,所以h(a)=2a-1.
③當(dāng)0≤a≤1時(shí),若x∈[1,2],則g(x)=1-ax,有
g(2)≤g(x)≤g(1);
若x∈[2,3],則g(x)=(1-a)x-1,有g(shù)(2)≤g(x)≤g(3);
因此,g(x)min=g(2)=1-2a,
而g(3)-g(1)=(2-3a)-(1-a)=1-2a,
故當(dāng)0≤a≤
1
2
時(shí),g(x)max=g(3)=2-3a,有h(a)=1-a.
當(dāng)
1
2
<a≤1時(shí),g(x)max=g(1)=1-a,有h(a)=a.
綜上所述:h(a)=
1-2a,a<0
1-a,0≤a≤
1
2
a
1
2
<a≤1
2a-1,a>1

(2)畫出y=h(x)的圖象,如圖:數(shù)形結(jié)合,可得 h(x)min=h(
1
2
)=
1
2
點(diǎn)評(píng):本題考查求函數(shù)的最大值、最小值的方法,體現(xiàn)了數(shù)形結(jié)合、及分類討論的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知a3+a6=9,a2a7=8,則a32+a62=( 。
A、9B、65C、72D、99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中與AD1成600角的面對角線的條數(shù)是( 。
A、4條B、6條C、8條D、10條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)證明:A+B+C=nπ(A,B,C≠kπ+
π
2
,k∈Z,n∈Z)的充要條件是tanA+tanB+tanC=tanAtanBtanC;
(2)利用(1)計(jì)算
tan20°+tan40°+tan120°
tan20°tan40°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過點(diǎn)F且斜率為l的直線與拋物線交于兩點(diǎn)M,N,坐標(biāo)原點(diǎn)為O,且△MON的面積為2
2

(1)求拋物線C的方程;
(2)若橢圓E:
y2
a2
+
x2
b2
=1(a>b>0)過點(diǎn)F,直線l:y=x+t被橢圓E截得的弦長的最大值為
8
3
,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,集合A={x|x≤3或x≥6},B={x|-2<x<9}.
(1)求A∪B,(∁UA)∩B;
(2)已知C={x|a<x<a+1},若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C經(jīng)過伸縮變換
x′=
1
2
x
y′=3y
后,對應(yīng)曲線的方程為:x2+y2=1,則曲線C的方程為(  )
A、
x2
4
+9y2=1
B、4x2=
y2
9
=1
C、
x2
4
+
y2
9
=1
D、4x2+9y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心在直線x-y=0上的C經(jīng)過A(0,2),并被直線x+y-3=0截得的弦長為
14

(1)求圓C的方程;
(2)設(shè)m,n∈R,若直線(m+1)x+(n+1)y-4=0與C相切,求m+n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和Sn=
2n-3n
2n
,求證:{an}是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案