13.設(shè)當(dāng)x=θ時,函數(shù)f(x)=2cosx-3sinx取得最小值,則tanθ等于( 。
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

分析 利用輔助角公式化簡函數(shù)的解析式為f(x)=-$\sqrt{13}$cos(x-θ) (其中,cosθ=-$\frac{2}{\sqrt{13}}$,sinθ=$\frac{3}{\sqrt{13}}$ ),根據(jù)當(dāng)x=θ時,函數(shù)f(x)取最小值,可得tanθ的值.

解答 解:∵當(dāng)x=θ時,函數(shù)f(x)=2cosx-3sinx=$\sqrt{13}$($\frac{2}{\sqrt{13}}$cosx-$\frac{3}{\sqrt{13}}$sinx)=-$\sqrt{13}$(-$\frac{2}{\sqrt{13}}$cosx+$\frac{3}{\sqrt{13}}$sinx)
=-$\sqrt{13}$cos(x-θ) (其中,cosθ=-$\frac{2}{\sqrt{13}}$,sinθ=$\frac{3}{\sqrt{13}}$ )取得最小值,
則tanθ=$\frac{sinθ}{cosθ}$=-$\frac{3}{2}$,
故選:C.

點評 本題主要考查輔助角公式,余弦函數(shù)的定義域和值域,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}\frac{a}{x-1},\;x≤0\\{log_2}x,\;x>0.\end{array}\right.$
①若a=1,且關(guān)于x的方程f(x)=k有兩個不同的實根,則實數(shù)k的取值范圍是[-1,0);
②若關(guān)于x的方程f(f(x))=0有且只有一個實根,則實數(shù)a的取值范圍是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥-1}\\{x+y≤4}\\{y≥2}\\{\;}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+4y的最大值為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.袋中裝有5只大小相同的球,編號分別為1,2,3,4,5,若從該袋中隨機(jī)地取出3只,則被取出的球的編號之和為奇數(shù)的概率是$\frac{2}{5}$(結(jié)果用最簡分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)y=f(x),若在區(qū)間I內(nèi)有且只有一個實數(shù)c(c∈I),使得f(c)=0成立,則稱函數(shù)y=f(x)在區(qū)間I內(nèi)具有唯一零點.
(1)判斷函數(shù)f(x)=log2|x|在定義域內(nèi)是否具有唯一零點,并說明理由;
(2)已知向量$\overrightarrow{m}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),$\overrightarrow{n}$=(sin2x,cos2x),x∈(0,π),證明f(x)=$\overrightarrow{m}•\overrightarrow{n}$+1在區(qū)間(0,π)內(nèi)具有唯一零點;
(3)若函數(shù)f(x)=x2+2mx+2m在區(qū)間(-2,2)內(nèi)具有唯一零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若點P(cosα,sinα)在直線y=-2x上,則$cos(2α+\frac{π}{3})$的值等于$\frac{4\sqrt{3}-3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,某水域的兩直線型岸邊l1,l2 成定角120°,在該水域中位于該角角平分線上且與頂點A相距1公里的D處有一固定樁.現(xiàn)某漁民準(zhǔn)備經(jīng)過該固定樁安裝一直線型隔離網(wǎng)BC(B,C分別在l1和l2上),圍出三角形ABC養(yǎng)殖區(qū),且AB和AC都不超過5公里.設(shè)AB=x公里,AC=y公里.
(1)將y表示成x的函數(shù),并求其定義域;
(2)該漁民至少可以圍出多少平方公里的養(yǎng)殖區(qū)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)集合S={0,1,2,3,5},從中任取兩個不同的數(shù)作為A,B的值,得到直線Ax+By=0所有不同的直線的條數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中.
(1)若tanA與tanB是方程6x2-5x+1=0的兩個根,求角C;
(2)若C=90°,求sinA•sinB的最大值.

查看答案和解析>>

同步練習(xí)冊答案