7.在正三棱錐S-ABC中,異面直線SA與BC所成角的大小為(  )
A.30°B.60°C.90°D.120°

分析 取BC中點O,連結(jié)AO、SO,推導出BC⊥平面SOA,從而得到異面直線SA與BC所成角的大小為90°.

解答 解:取BC中點O,連結(jié)AO、SO
∵在正三棱錐S-ABC中,SB=SC,AB=AC,
∴SO⊥BC,AO⊥BC,
∵SO∩AO=O,∴BC⊥平面SOA,
∵SA?平面SAO,
∴BC⊥SA,
∴異面直線SA與BC所成角的大小為90°.
故選:C.

點評 本題考查異面直線所成角的求法,是基礎題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知P為△ABC所在平面上的一點,且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+2y$\overrightarrow{AC}$,其中x,y∈R為實數(shù),設點M(x,y),點N(1,1),當點P落在△ABC的內(nèi)部,|MN|的取值范圍是($\frac{2\sqrt{5}}{5}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{n}^{2}+1}$(n∈N*),則a2等于(  )
A.1+$\frac{1}{2}$B.$\frac{1}{5}$C.1$+\frac{1}{2}$$+\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$D.非以上答案

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.求下列定積分:
(1)${∫}_{1}^{2}$(ex-$\frac{1}{x}$)dx;
(2)${∫}_{0}^{\frac{π}{2}}$(cos$\frac{x}{2}$-sin$\frac{x}{2}$)2dx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知f(x)的圖象關于原點對稱,且當x∈(-∞,0)時,f(x)-xf′(x)>0(其中f′(x)是f(x)的導函數(shù)),a=$\frac{{\sqrt{2}}}{2}f({0.5^{-0.5}}),b=({log_3}π)f({log_π}3)$,$c=({log_9}\frac{1}{3})f({log_{\frac{1}{3}}}9)$,則下列關系式正確的是(  )
A.c>a>bB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知數(shù)列{an}滿足:a1=2,且對任意n,m∈N*,都有am+n=am•an,Sn是數(shù)列{an}的前n項和,則$\frac{S_4}{S_2}$=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知數(shù)列{an}前n項和為Sn,若Sn=2an-2n,則Sn=n•2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設公差不為0的等差數(shù)列{an}的首項a1=1,前n項和為Sn,且$\frac{1}{{a}_{1}}$,$\frac{1}{{a}_{2}}$,$\frac{1}{{a}_{4}}$成等比數(shù)列.
(1)求數(shù)列{an}的通項公式及Sn
(2)設bn=$\frac{1}{{S}_{n}}$,tn=$\frac{1}{{a}_{{2}^{n-1}}}$,且Bn,Tn分別為數(shù)列{bn},{tn}的前n項和,比較Bn與Tn+$\frac{1}{{2}^{n-1}}$的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.關于x的方程x2+4|x|+$\frac{2}{{{x^2}+4|x|}}$=3的最大實數(shù)根是$\sqrt{6}$-2.

查看答案和解析>>

同步練習冊答案