【題目】設函數(shù)f(x)= ,關于x的方程[f(x)]2+mf(x)﹣1=0有三個不同的實數(shù)解,則實數(shù)m的取值范圍是( )
A.(﹣∞,e﹣ )
B.(e﹣ ,+∞)
C.(0,e)
D.(1,e)
【答案】B
【解析】解:f′(x)= ,
∴當x>e時,f′(x)<0,當0<x<e時,f′(x)>0,
∴f(x)在(0,e]上單調(diào)遞增,在(e,+∞)上單調(diào)遞減.
∴fmax(x)=f(e)= .
作出f(x)的大致函數(shù)圖象如下:
由圖象可知當0<k 時,f(x)=k有兩解,
當k≤0或k= 時,f(x)=k有一解,當k 時,f(x)=k無解.
令g(x)=x2+mx﹣1,則g(f(x))有三個零點,
∴g(x)在(0, )上有一個零點,在(﹣∞,0]∪{ }上有一個零點.
∵g(x)的圖象開口向上,且g(0)=0,∴g(x)在(﹣∞,0)上必有一個零點,
∴g( )>0,即 ,
解得m>e﹣ .
故選B.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若f(-1)=f(1),求a,并直接寫出函數(shù)的單調(diào)增區(qū)間;
(2)當a≥時,是否存在實數(shù)x,使得=一?若存在,試確定這樣的實數(shù)x的個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知直線上兩點的極坐標分別為,圓的參數(shù)方程為(為參數(shù)).
(1)設為線段的中點,求直線的平面直角坐標方程;
(2)判斷直線與圓的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以坐標原點O為極點,O軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=2(sinθ+cosθ+ ).
(1)寫出曲線C的參數(shù)方程;
(2)在曲線C上任取一點P,過點P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于兩條平行直線、(在下方)和圖象有如下操作:將圖象在直線下方的部分沿直線翻折,其余部分保持不變,得到圖象;將圖象在直線上方的部分沿直線翻折,其余部分保持不變,得到圖象:再將圖在直線下方的部分沿直線翻折,其余部分保持不變,得到圖象;再將圖象在直線上方的部分沿直線翻折,其余部分保持不變,得到圖象;以此類推…;直到圖象上所有點均在、之間(含、上)操作停止,此時稱圖象為圖象關于直線、的“衍生圖形”,線段關于直線、的“衍生圖形”為折線段.
(1)直線型
平面直角坐標系中,設直線,直線
①令圖象為的函數(shù)圖象,則圖象的解析式為
②令圖像為的函數(shù)圖象,請你畫出和的圖象
③若函數(shù)的圖象與圖象有且僅有一個交點,且交點在軸的左側(cè),那么的取值范圍是_______.
④請你觀察圖象并描述其單調(diào)性,直接寫出結(jié)果_______.
⑤請你觀察圖象并判斷其奇偶性,直接寫出結(jié)果_______.
⑥圖象所對應函數(shù)的零點為_______.
⑦任取圖象中橫坐標的點,那么在這個變化范圍中所能取到的最高點的坐標為(_______,_______),最低點坐標為(_______,_______).
⑧若直線與圖象有2個不同的交點,則的取值范圍是_______.
⑨根據(jù)函數(shù)圖象,請你寫出圖象的解析式_______.
(2)曲線型
若圖象為函數(shù)的圖象,
平面直角坐標系中,設直線,直線,
則我們可以很容易得到所對應的解析式為.
①請畫出的圖象,記所對應的函數(shù)解析式為.
②函數(shù)的單調(diào)增區(qū)間為_______,單調(diào)減區(qū)間為_______.
③當時候,函數(shù)的最大值為_______,最小值為_______.
④若方程有四個不同的實數(shù)根,則的取值范圍為_______.
(3)封閉圖形型
平面直角坐標系中,設直線,直線
設圖象為四邊形,其頂點坐標分別為,,,,四邊形關于直線、的“衍生圖形”為.
①的周長為_______.
②若直線平分的周長,則_______.
③將沿右上方方向平移個單位,則平移過程中所掃過的面積為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為美化環(huán)境,某市計劃在以、兩地為直徑的半圓弧上選擇一點建造垃圾處理廠(如圖所示).已知、兩地的距離為,垃圾場對某地的影響度與其到該地的距離有關,對、兩地的總影響度對地的影響度和對地影響度的和.記點到地的距離為,垃圾處理廠對、兩地的總影響度為.統(tǒng)計調(diào)查表明:垃圾處理廠對地的影響度與其到地距離的平方成反比,比例系數(shù)為;對地的影響度與其到地的距離的平方成反比,比例系數(shù)為.當垃圾處理廠建在弧的中點時,對、兩地的總影響度為.
(1)將表示成的函數(shù);
(2)判斷弧上是否存在一點,使建在此處的垃圾處理廠對、兩地的總影響度最。咳舸嬖,求出該點到地的距離;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定理:“實數(shù)m,n為常數(shù),若函數(shù)滿足,則函數(shù)的圖象關于點成中心對稱”.
(1)已知函數(shù)的圖象關于點成中心對稱,求實數(shù)b的值;
(2)已知函數(shù)滿足,當時,都有成立,且當時, ,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列命題中,正確命題的個數(shù)為( 。
①兩個復數(shù)不能比較大;
②,若,則;
③若是純虛數(shù),則實數(shù);
④是虛數(shù)的一個充要條件是;
⑤若是兩個相等的實數(shù),則是純虛數(shù);
⑥的一個充要條件是.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com