【題目】已知函數(shù)f(x)=2x﹣3x2 , 設(shè)數(shù)列{an}滿足:a1= ,an+1=f(an)
(1)求證:對(duì)任意的n∈N* , 都有0<an< ;
(2)求證: + +…+ ≥4n+1﹣4.
【答案】
(1)證明:∵an+1=f(an),函數(shù)f(x)=2x﹣3x2,
∴an+1=2an﹣3 =﹣3 + ≤ .
若an+1= ,則an= ,可得a1= ,與已知a1= 矛盾,因此等號(hào)不成立.∴an< .
= = =3an(3an﹣2) ,
由an< (n∈N*),可得an+1 ,3an﹣2<0,因此an+1與an同號(hào),a1= >0,∴an>0,
綜上可得:對(duì)任意的n∈N*,都有0<an<
(2)解:∵0<an< ,an+1=2an﹣3 ,∴2 an+1﹣an= =an(1﹣3an)>0,
∴an+1>an,∴數(shù)列{an}單調(diào)遞增.
∴n>1時(shí), ,
∴ >4,
∴ = = > > >…> =4n+1,
∴ + +…+ ≥3(4+42+…+4n)=3× =4n+1﹣4.
∴ + +…+ ≥4n+1﹣4
【解析】1、由題意可得an+1=2an-3an2=-3(an-)2 +,可得做差an+1(an+1-)整理可得3an(3an﹣2) ( an ) 2 由(nN*) 可得an+1與an同號(hào)因此an>0.
2、由題意0<an< ,an+1=an﹣3 a n2 ,∴an+1﹣an= a n 3 a n 2=an(1﹣3an)>0,因此數(shù)列{an}單調(diào)遞增n>1時(shí), > a n > ,
∴ >4,由遞推公式可得式子 再由等比數(shù)列求和公式可得上式等于4n+1﹣4.即得結(jié)論。
【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)列的前n項(xiàng)和,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(I)如果 在 處取得極值,求 的值.
(II)求函數(shù) 的單調(diào)區(qū)間.
(III)當(dāng) 時(shí),過(guò)點(diǎn) 存在函數(shù)曲線 的切線,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log2(1+x)+alog2(1﹣x)(a∈R)的圖象關(guān)于y軸對(duì)稱.
(1)求函數(shù)f(x)的定義域;
(2)求a的值;
(3)若函數(shù)g(x)=x﹣2f(x)﹣2t有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)= sin(2x+φ)(|φ|< )的圖象關(guān)于直線x= 對(duì)稱,且當(dāng)x1 , x2∈(﹣ ,﹣ ),x1≠x2時(shí),f(x1)=f(x2),則f(x1+x2)等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知 = .
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,攝影愛(ài)好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為 .設(shè)S的眼睛到地面的距離為 米
(1)求攝影愛(ài)好者到立柱的水平距離和立柱的高度;
(2)立柱的頂端有一長(zhǎng)2米的彩桿MN繞其中點(diǎn)O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).?dāng)z影愛(ài)好者有一視角范圍為 的鏡頭,在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影愛(ài)好者是否都可以將彩桿全部攝入畫(huà)面?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀如圖所示的程序框圖,則該算法的功能是( )
A.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
B.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
C.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和
D.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ +alnx.
(Ⅰ)若f(x)在區(qū)間[2,3]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)f′(x)的圖象為曲線C,曲線C上的不同兩點(diǎn)A(x1 , y1)、B(x2 , y2)所在直線的斜率為k,求證:當(dāng)a≤4時(shí),|k|>1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com