已知函數(shù)
(Ⅰ)請寫出函數(shù)在每段區(qū)間上的解析式,并在圖中的直角坐標(biāo)系中作出函數(shù)的圖象;
(II)若不等式對任意的實數(shù)恒成立,求實數(shù)的取值范圍.

(Ⅰ)
函數(shù)的圖象如下圖所示:

(II)

解析試題分析:(Ⅰ)去絕對值符號,再畫出函數(shù)圖象;(II)轉(zhuǎn)化為,需先利用導(dǎo)數(shù)求
試題解析:(Ⅰ) 
函數(shù)的圖象如下圖所示:
  
(II)由題可知:   
而又由(Ⅰ)中的圖象可得出 
于是  ,
解得:  
故實數(shù)的取值范圍是              
考點:不等式選講.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)定義域為的函數(shù)為實數(shù))。
(1)若是奇函數(shù),求的值;  
(2)當(dāng)是奇函數(shù)時,證明對任何實數(shù)都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù), .
(1)若, 函數(shù) 在其定義域是增函數(shù),求的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)的最小值;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點,過線段的中點軸的垂線分別交、于點、,問是否存在點,使處的切線與處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中R.
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時,若,總有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若x=時,取得極值,求的值;
(2)若在其定義域內(nèi)為增函數(shù),求的取值范圍;
(3)設(shè),當(dāng)=-1時,證明在其定義域內(nèi)恒成立,并證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),若函數(shù)圖象上任意一點關(guān)于原點的對稱點的軌跡恰好是函數(shù)的圖象.
(1)寫出函數(shù)的解析式;
(2)當(dāng)時總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知函數(shù)為有理數(shù)且),求函數(shù)的最小值;
(2)①試用(1)的結(jié)果證明命題:設(shè)為有理數(shù)且,若時,則;
②請將命題推廣到一般形式,并證明你的結(jié)論;
注:當(dāng)為正有理數(shù)時,有求導(dǎo)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),證明:
(Ⅰ)對每個,存在唯一的,滿足;
(Ⅱ)對任意,由(Ⅰ)中構(gòu)成的數(shù)列滿足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=log)為奇函數(shù),a為常數(shù).
(Ⅰ)求a的值;
(Ⅱ)證明f(x)在(1,+∞)內(nèi)單調(diào)遞增;
(Ⅲ)若對于[3,4]上的每一個的值,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案