已知函數(shù),,其中R.
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若,,總有成立,求實(shí)數(shù)的取值范圍.
(1)在上單調(diào)遞減,在上單調(diào)遞增;(2);(3).
解析試題分析:(1)先對(duì)求導(dǎo),由于的正負(fù)與參數(shù)有關(guān),故要對(duì)分類討論來研究單調(diào)性; (2)先由在其定義域內(nèi)為增函數(shù)轉(zhuǎn)化為在不等式中求參數(shù)范圍的問題,利用分離參數(shù)法和基本不等式的知識(shí)求出參數(shù)的取值范圍;(3)先通過導(dǎo)數(shù)研究在的最值,然后根據(jù)命題“若,,總有成立”分析得到在上的最大值不小于在上的最大值,從而列出不等式組求出參數(shù)的取值范圍.
試題解析:解:(1)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/f3/3/1doqu2.png" style="vertical-align:middle;" />,且, 1分
①當(dāng)時(shí),,在上單調(diào)遞增; 2分
②當(dāng)時(shí),由,得;由,得;
故在上單調(diào)遞減,在上單調(diào)遞增. 4分
(2),的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/f3/3/1doqu2.png" style="vertical-align:middle;" />
5分
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/c4/d/1kwe94.png" style="vertical-align:middle;" />在其定義域內(nèi)為增函數(shù),所以,
而,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以 8分
(3)當(dāng)時(shí),,
由得或
當(dāng)時(shí),;當(dāng)時(shí),.
所以在上, 10分
而“,,總有成立”等價(jià)于
“在上的最大值不小于在上的最大值”
而在上的最大值為
所以有 12分
所以實(shí)數(shù)的取值范圍是  
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)= 是奇函數(shù)
(1)求實(shí)數(shù)m的值
(2)若函數(shù)f(x)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A、B、C是直線上的不同三點(diǎn),O是外一點(diǎn),向量滿足,記;
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
(1)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)時(shí),求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,對(duì)都有成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:(且).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(是不為零的實(shí)數(shù),為自然對(duì)數(shù)的底數(shù)).
(1)若曲線與有公共點(diǎn),且在它們的某一公共點(diǎn)處有共同的切線,求k的值;
(2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求此時(shí)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)請(qǐng)寫出函數(shù)在每段區(qū)間上的解析式,并在圖中的直角坐標(biāo)系中作出函數(shù)的圖象;
(II)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(1)求當(dāng)時(shí),函數(shù)的表達(dá)式;
(2)作出函數(shù)的圖象,并指出其單調(diào)區(qū)間。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com