【題目】.如圖,在四棱錐中,底面是正方形,側(cè)棱,的中點,于點

1)證明//平面

2)證明平面;

3)求.

【答案】1)(2)證明見解析,(3

【解析】

試題欲證線面平行,可現(xiàn)尋求線線平行,連接,交,連接,由中位線定理知:,則平面.第二步證明線面垂直,需尋求線線垂直,因的中點,則,下面證明:由于側(cè)棱,則,又,平面,從而,因,平面PCB,則,又由已知,則平面,第三步,先求三角形的面積,又因為垂直平面

為棱錐的高,最后求出體積.

試題解析:(1)連接,交,連接,因為分別為的中點,由中位線定理知:,平面平面,則平面

2的中點,則,又因為側(cè)棱,平面ABCD,則,又,,有平面,平面,從而,因,平面,,則,又由已知,則平面.

3,,計算

,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用紅、黃、藍三種不同的顏色給大小相同的三個圓隨機涂色,每個圓只涂一種顏色.設(shè)事件三個圓的顏色全不相同,事件三個圓的顏色不全相同,事件其中兩個圓的顏色相同,事件三個圓的顏色全相同”.

1)寫出試驗的樣本空間.

2)用集合的形式表示事件.

3)事件與事件有什么關(guān)系?事件的交事件與事件有什么關(guān)系?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于原點對稱,其中為常數(shù).

1)求的值;

2)當時, 恒成立,求實數(shù)的取值范圍;

3若關(guān)于的方程上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD⊥平面BCD,點E,F(EA,D不重合)分別在棱ADBD上,且EFAD.

求證:(1)EF∥平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值來衡量.當時,產(chǎn)品為一等品;當時,產(chǎn)品為二等品;當時,產(chǎn)品為三等品.現(xiàn)從甲、乙兩條生產(chǎn)線,各隨機抽取了100件該產(chǎn)品作為樣本,測量每件產(chǎn)品的質(zhì)量指標值,整理得到甲、乙兩條生產(chǎn)線產(chǎn)品的質(zhì)量指標值的頻率分布直方圖如圖所示,視樣本的頻率為總體的概率.

1)若從甲、乙生產(chǎn)線生產(chǎn)的產(chǎn)品中各隨機抽取1件,求恰好抽到1件一等品的概率;

2)若一件三等品、二等品、一等品的利潤分別為10元、20元、30元,從乙生產(chǎn)線生產(chǎn)的產(chǎn)品中隨機抽取2件,求這兩件產(chǎn)品的利潤之和的分布列和數(shù)學(xué)期望;

3)若從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中隨機抽取件,其中抽到二等品的件數(shù)為隨機變量,且的數(shù)學(xué)期望不小于1200,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,,,,則所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,不等式恒成立,則正實數(shù)的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標系中,圓的方程為為圓上三個定點,某同學(xué)從A點開始,用擲骰子的方法移動棋子,規(guī)定:①每擲一次骰子,把一枚棋子從一個定點沿圓弧移動到相鄰下一個定點;②棋子移動的方向由擲骰子決定,若擲出骰子的點數(shù)為3的倍數(shù),則按圖中箭頭方向移動;若擲出骰子的點數(shù)為不為3的倍數(shù),則按圖中箭頭相反的方向移動.設(shè)擲骰子次時,棋子移動到A,B,C處的概率分別為例如:擲骰子一次時,棋子移動到A,BC處的概率分別為,.

1)分別擲骰子二次,三次時,求棋子分別移動到A,B,C處的概率;

2)擲骰子N次時,若以X軸非負半軸為始邊,以射線OA,OB,OC為終邊的角的正弦值弦值記為隨機變量,求的分布列和數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若設(shè)是函數(shù)的極值點,求函數(shù)上的最大值;

2)設(shè)函數(shù)兩處取到極值,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案