5.點A(a,6)到直線3x-4y-6=0的距離等于3,求a的值5或15.

分析 利用點到直線的距離公式求解.

解答 解:∵點A(a,6)到直線3x-4y-6=0的距離等于3,
∴$\frac{|3a-4×6-6|}{\sqrt{{3}^{2}+{4}^{2}}}$=3,
解得a=5或a=15.
∴a的值為5或15.
故答案為:5或15.

點評 本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意點到直線的距離公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.下列事件為必然事件的是(  )
A.在一標準大氣壓下,20℃的純水結(jié)冰
B.平時的百分制考試中,小白的考試成績?yōu)?00分
C.拋一枚硬幣,落下后正面朝上
D.邊長為a,b的長方形面積為ab

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知圓C:x2+y2+Dx+Ey+F=0的圓心在第二象限,半徑為$\sqrt{2}$,且圓C與直線3x+4y=0及y軸都相切.
(1)求D、E、F;
(2)若直線x-y+2$\sqrt{2}$=0與圓C交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在正方體ABCD-A1B1C1D1中,E為AB上一點.
(1)求BD和平面B1CD所成的角;
(2)當E點為AB中點,求銳二面角E-B1C-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),若$f(x)+g(x)={log_2}(1+{2^x})$,則f(2)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖所示,在長方體ABCD-A1B1C1D1中,AB=BC=2,DD1=1.
(1)求證:B1D1⊥平面C1A1AC;
(2)以D1為坐標原點建立空間直角坐標系,點O(0,1,0)是圓的圓心,且圓的半徑為1.
(I)過點C1的直線與圓相切,切點為P,且P的橫坐標x為正,與A1D1交與點N,求C1N長度;
(Ⅱ)在(I)的條件下,圓上有一動點Q,求$\overrightarrow{CQ}$•$\overrightarrow{CP}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.不等式$\frac{3{x}^{2}}{2x-1}$-x≥0的解集為(  )
A.[-1,0]∪[$\frac{1}{2}$,+∞)B.(-1,0)∪($\frac{1}{2}$,+∞)C.[-1,0]∪($\frac{1}{2}$,+∞)D.R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在平面直角坐標系xOy中,如圖所示,已知橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的左、右頂點分別為A,B,右焦點為F.設過點T(t,m)的直線TA,TB與此橢圓分別交于點M(x1,y1),N(x2,y2),其中m>0,y1>0,y2<0.
(Ⅰ)設動點P滿足:|PF|2-|PB|2=4,求點P的軌跡;
(Ⅱ)設${x_1}=2,{x_2}=\frac{1}{3}$,求點T的坐標;
(Ⅲ)設t=9,求證:直線MN必過x軸上的一定點(其坐標與m無關),并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.①已知函數(shù)y=2sin(3x+2ϕ-$\frac{π}{3}}$)(ϕ>0)是R上的奇函數(shù),求ϕ的最小值.
②已知函數(shù)y=2sin(3x+2ϕ-$\frac{π}{3}}$)(ϕ>0)是R上的偶函數(shù),求ϕ的最小值.

查看答案和解析>>

同步練習冊答案