分析 (1)證明B1D1⊥A1C1,B1D1⊥CC1,即可證明B1D1⊥平面C1A1AC;
(2)(I)由題意sin∠OC1P=$\frac{1}{3}$,即可求C1N長度;
(Ⅱ)由(I)可知C1P=2$\sqrt{2}$,sin2∠OC1P=2×$\frac{1}{3}×\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,即可求$\overrightarrow{CQ}$•$\overrightarrow{CP}$的取值范圍.
解答 (1)證明:在長方體ABCD-A1B1C1D1中,AB=BC,
∴B1D1⊥A1C1,B1D1⊥CC1,
∵A1C1∩CC1=C1,
∴B1D1⊥平面C1A1AC;
(2)(I)解:由題意sin∠OC1P=$\frac{1}{3}$,
∴cos∠OC1P=$\frac{2\sqrt{2}}{3}$,
∴C1N=$\frac{2}{\frac{2\sqrt{2}}{3}}$=$\frac{3}{2}\sqrt{2}$;
(Ⅱ)由(I)可知C1P=2$\sqrt{2}$,sin2∠OC1P=2×$\frac{1}{3}×\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,
∴cos2∠OC1P=$\frac{7}{9}$,
∴$\overrightarrow{CQ}$•$\overrightarrow{CP}$的最小值為$\frac{56}{9}$,最大值為8,
∴$\overrightarrow{CQ}$•$\overrightarrow{CP}$的取值范圍是[$\frac{56}{9}$,8].
點(diǎn)評(píng) 本題考查線面垂直,考查平面向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com