10.求值:cos(x+20°)cos(x-40°)+cos(x-70°)sin(x-40°).

分析 直接利用同角三角函數(shù)基本關系式以及兩角和與差的余弦函數(shù)化簡求解即可.

解答 解:cos(x+20°)cos(x-40°)+cos(x-70°)sin(x-40°)
=cos(x+20°)cos(x-40°)+sin(x+20°)sin(x-40°)
=cos(x+20°-x+40°)
=cos60°
=$\frac{1}{2}$.

點評 本題考查兩角和與差的三角函數(shù),同角三角函數(shù)基本關系式的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知(x+1)2(x+$\frac{1}{{x}^{3}}$)n的展開式中沒有x2項,n∈N*,且5≤n≤8,則n=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.8個人排成一排,若要求甲、乙、丙三人必須站在一起,則不同的排法有( 。
A.${A}_{8}^{8}$種B.3${A}_{7}^{7}$種C.3${A}_{6}^{6}$種D.${A}_{3}^{3}$${A}_{6}^{6}$種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知等差數(shù)列{an}的前n項和為Sn,a1=1,S2•S3=36,且對任意n∈N*都有an+1>an,則S5=25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某村欲修建一橫斷面為等腰梯形的水渠(如圖),為降低成本,必須盡量減少水與水渠壁的接觸面,若水渠的橫斷面面積設計為定值m,渠深3米,則水渠側壁的傾斜角α應為多少時,方能使修建成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知α∩β=a,b?β且b∩a=A,c?α且c∥a,則b與c的位置關系( 。
A.相交且垂直B.平行直線C.異面直線D.相交不垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知$\overrightarrow{a}$為非零向量,$\overrightarrow$=(3,4),且$\overrightarrow{a}$⊥$\overrightarrow$,求$\overrightarrow{a}$的單位向量$\overrightarrow{{a}_{0}}$=($\frac{4}{5}$,-$\frac{3}{5}$)或(-$\frac{4}{5}$,$\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$ $\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)2$\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)2$\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)(y-$\overrightarrow y$)$\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)(y-$\overrightarrow y$)
46.656.36.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結果及表中數(shù)據(jù),建立y關于x的回歸方程;
(Ⅲ)以知這種產(chǎn)品的年利率z與x、y的關系為z=0.2y-x.根據(jù)(Ⅱ)的結果回答
當年宣傳費x=49時,年銷售量及年利潤的預報值是多少?
附:對于一組數(shù)據(jù)(u1 v1),(u2 v2)…..(un vn),其回歸線v=α+βu的斜率和截距的最小二乘估計分別為:$\widehatβ=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\widehatα=\overline v-\widehatβ\overline u$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示,四棱錐P-ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點.
(1)求證:平面PDE⊥平面PAC;
(Ⅱ)求直線PC與平面PDE所成的角的正弦值.

查看答案和解析>>

同步練習冊答案