15.已知α∩β=a,b?β且b∩a=A,c?α且c∥a,則b與c的位置關(guān)系( 。
A.相交且垂直B.平行直線C.異面直線D.相交不垂直

分析 由已知得b∩α=A,c?a,且A∉c,由此利用異面直線判定定理得b與c是異面直線.

解答 解:如圖,∵α∩β=a,b?β且b∩a=A,c?α且c∥a
∴b∩α=A,c?a,且A∉c,
∴由異面直線判定定理得b與c是異面直線.
故選:C.

點(diǎn)評(píng) 本題考查兩直線位置關(guān)系的確定,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意異面直線判定定理的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若?x∈(0,$\frac{1}{2}$),9x<logax(a>0且a≠1),則實(shí)數(shù)a的取值范圍是( 。
A.[2${\;}^{-\frac{1}{3}}$,1)B.(0,2${\;}^{-\frac{1}{3}}$]C.(2${\;}^{\frac{1}{3}}$,3)D.(1,2${\;}^{\frac{1}{3}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若從4名男生和3名女生中選兩人參加會(huì)議,要求女生必須有人參加,則不同的選法有15種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.對(duì)任意兩個(gè)非零的平面向量$\overrightarrow{α}$和$\overrightarrow{β}$,定義運(yùn)算$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{\overrightarrow{α}•\overrightarrow{β}}{\overrightarrow{β}•\overrightarrow{β}}$,現(xiàn)有如下四個(gè)命題:
①$\overrightarrow{α}$?$\overrightarrow{β}$=$\overrightarrow{β}$?$\overrightarrow{α}$;
②$\overrightarrow{α}$=(1,2),$\overrightarrow{β}$=(1,1),則$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{3}{2}$;
③若0<|$\overrightarrow{α}$|<|$\overrightarrow{β}$|,$\overrightarrow{α}$與$\overrightarrow{β}$的夾角θ∈[$\frac{π}{4}$,$\frac{π}{2}$),則$\overrightarrow{α}$?$\overrightarrow{β}$∈(0,$\frac{\sqrt{2}}{2}$];
④若|$\overrightarrow{α}$|≥|$\overrightarrow{β}$|>0,$\overrightarrow{α}$與$\overrightarrow{β}$的夾角θ∈(0,$\frac{π}{4}$),且$\overrightarrow{α}$?$\overrightarrow{β}$和$\overrightarrow{β}$?$\overrightarrow{α}$都在集合{$\frac{n}{2}$|n∈Z}上,則$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{3}{2}$.
其中正確命題的序號(hào)是②④(把所有正確命題的序號(hào)都寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.求值:cos(x+20°)cos(x-40°)+cos(x-70°)sin(x-40°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知在△ABC中,∠B=60°,a=3,b=$\sqrt{19}$.
(1)求c的大;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求滿足條件5x2+5y2+8xy+2y-2x+2=0的實(shí)數(shù)x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.所謂正三棱錐,指的是底面為正三角形,頂點(diǎn)在底面上的射影為底面三角形中心的三棱錐,在正三棱錐S-ABC中,M是SC的中點(diǎn),且AM⊥SB,底面邊長(zhǎng)AB=2$\sqrt{2}$,則正三棱錐S-ABC的體積為$\frac{4}{3}$,其外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.球的半徑擴(kuò)大為原來(lái)的2倍,則其表面積擴(kuò)大為原來(lái)的( 。
A.2倍B.4倍C.6倍D.8倍

查看答案和解析>>

同步練習(xí)冊(cè)答案