分析 作BE⊥DC于E,令y=AD+DC+BC,由已知可得y=$\frac{m}{3}$+$\frac{6-3cosα}{sinα}$(0°<α<90°),利用換元法令u=$\frac{2-cosα}{sinα}$,求出u取最小值時α的大小,可得結(jié)論.
解答 解:作BE⊥DC于E,如圖1,
在Rt△BEC中,BC=$\frac{3}{sinα}$,CE=3cotα,
又AB-CD=2CE=6cotα,
S=$\frac{(AB+CD)×3}{2}$=m,即
AB+CD=$\frac{2}{3}$m,
故AB=$\frac{m}{3}$+3cotα,CD=$\frac{m}{3}$-3cotα.
設y=AD+DC+BC,
則y=$\frac{3}{sinα}$+$\frac{3}{sinα}$+$\frac{m}{3}$-3cotα=$\frac{m}{3}$+$\frac{6}{sinα}$-3cotα=$\frac{m}{3}$+$\frac{6}{sinα}$-$\frac{3cosα}{sinα}$=$\frac{m}{3}$+$\frac{6-3cosα}{sinα}$,(0°<α<90°),
由于m是常量,欲使y最小,只需$\frac{6-3cosα}{sinα}$=3×$\frac{2-cosα}{sinα}$取最小值,
設u=$\frac{2-cosα}{sinα}$,u可看作(0,2)與(-sinα,cosα)兩點連線的斜率,
由于α∈(0°,90°),
點(-sinα,cosα)在曲線x2+y2=1(-1<x<0,0<y<1)上運動,如圖2,
當過(0,2)的直線與曲線相切時,直線斜率最小,此時切點為(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),
則有sinα=$\frac{\sqrt{3}}{2}$,且cosα=$\frac{1}{2}$,那么α=60°,
故當α=60°時,修建成本最低.
點評 本題主要考查函數(shù)的應用問題,考查三角函數(shù)的應用,根據(jù)條件其中求出水與渠壁的接觸面y的解析式,將實際問題轉(zhuǎn)化為函數(shù)問題,是解答的關(guān)鍵.綜合性較強,有一定的難度.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | -$\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$π | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com