【題目】已知點A、B、C的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),α∈(,).

(1)若||=||,求角α的值;

(2)若·,求的值.

【答案】(1)α=;(2).

【解析】試題分析:(1)首先根據(jù)兩點坐標,寫出向量的坐標,再寫出向量的模,利用模相等求解角;(2)利用公式進行化簡為,再利用條件可得,然后兩邊平方可求得原式的值.

試題解析:(1)∵=(cosα-3,sinα),=(cosα,sinα-3),

∴||=,

||=

由||=||得sinα=cosα. 又∵α∈(,),∴α=

(2)由·=-1得(cosα-3)cosα+sinα(sinα-3)=-1.∴sinα+cosα=

=2sinαcosα

由①式兩邊平方得1+2sinαcosα=, ∴2sinαcosα=. .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在(不含80)之間,屬于酒后駕車,在(含80)以上時,屬于醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了300輛機動車,查處酒后駕車和醉酒駕車的駕駛員共20人,檢測結果如下表:

酒精含量

人數(shù)

3

4

1

4

2

3

2

1

(1)繪制出檢測數(shù)據(jù)的頻率分布直方圖(在圖中用實線畫出矩形框即可);

(2)求檢測數(shù)據(jù)中醉酒駕駛的頻率,并估計檢測數(shù)據(jù)中酒精含量的眾數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四名同學根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關關系,并求得回歸直線方程和相關系數(shù)r,分別得到以下四個結論:


其中,一定不正確的結論序號是( )
A.②③
B.①④
C.①②③
D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市衛(wèi)生防疫部門為了控制某種病毒的傳染,提供了批號分別為 的五批疫苗,供全市所轄的 三個區(qū)市民注射,每個區(qū)均能從中任選其中一個批號的疫苗接種.
(1)求三個區(qū)注射的疫苗批號中恰好有兩個區(qū)相同的概率;
(2)記 三個區(qū)選擇的疫苗批號的中位數(shù)為X,求 X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù) 的圖象如圖所示,則下列函數(shù)與其圖象相符的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某一隨機變量x的概率分布如下,且 =5.9,則a的值為( )

2 -8

a

9

p

0.5

b-0.1

b


A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l過點P(-1,2)且與兩坐標軸的正半軸所圍成的三角形面積等于

(1)求直線l的方程.

(2)求圓心在直線l上且經過點M(2,1),N(4,-1)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,PA平面ABCDAB=4,BC=3,AD=5,∠DAB=∠ABC=90°,ECD的中點.

(1)證明:CD平面PAE;

(2)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐PABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)報道,某公司的32名職工的月工資(單位:元)如下:

職務

董事長

副董事長

董事

總經理

經理

管理

職員

人數(shù)

1

1

2

1

5

3

20

工資

5 500

5 000

3 500

3 000

2 500

2 000

1 500

(1)求該公司職工工資的平均數(shù)、中位數(shù)、眾數(shù).(精確到1元)

(2)假設副董事長的工資從5 000元提升到20 000元,董事長的工資從5 500元提升到30 000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)分別是多少?(精確到1元)

(3)你認為哪個統(tǒng)計量更能反映這個公司員工的工資水平?結合此問題談一談你的看法.

查看答案和解析>>

同步練習冊答案