11.已知圓的極坐標方程為ρ=2cosθ,以極點為原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-2\sqrt{2}+t\\ y=1-t\end{array}\right.$(t為參數(shù)),則圓心到直線l的距離是2.

分析 求出圓C的直角坐標方程和直線l的直角坐標方程,利用點到直線的距離公式能求出圓C的圓心到直線l的距離.

解答 解:∵圓C的極坐標方程為ρ=2cosθ,即ρ2=2ρcosθ,
∴圓C的直角坐標方程為x2+y2-2x=0,
圓心C(1,0),半徑r=$\frac{1}{2}$×$\sqrt{4}$=1,
∵直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-2\sqrt{2}+t\\ y=1-t\end{array}\right.$(t為參數(shù)),
∴直線l的直角坐標方程為x+y+2$\sqrt{2}$-1=0.
∴圓C的圓心到直線l的距離d=$\frac{1+2\sqrt{2}-1}{\sqrt{2}}$=2.
故答案為:2.

點評 本題考查圓心到直線的距離的求法,是基礎題,解題時要認真審題,注意點到直線的距離公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.為了推進身體健康知識宣傳,有關單位舉行了有關知識有獎問答活動,隨機對市民15~65歲的人群抽樣n人,回答問題統(tǒng)計結(jié)果如圖表所示:
組號分組回答
正確
的人數(shù)
回答正確
的人數(shù)占本
組的頻率
頻率正確直方圖 
第1組[15,25)50.5 
第2組[25,35)a0.9
第3組[35,45)27x
第4組[45,55)90.36
第5組[55,65)30.2
(1)分別求出n,a,x的值;
(2)請用統(tǒng)計方法估計參與該項知識有獎問答活動的n人的平均年齡(保留一位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=$\frac{1}{3}$x3+ax2-8x-1(a<0).若曲線y=f(x)的切線斜率的最小值是-9.求:
(1)a的值;
(2)函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若$\overrightarrow{a}$=(3,5cosx),$\overrightarrow$=(2sinx,cosx),則$\overrightarrow{a}$•$\overrightarrow$的范圍是[-6,$\frac{34}{5}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設集合A={x|x+2<0},B={x|(x+3)(x-1)>0}.
(1)求集合A∩B;
(2)若不等式ax2+2x+b>0的解集為A∪B,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若Sn是數(shù)列[an}的前n項的和,且Sn=-n2+6n+7,則數(shù)列{an}的最大項的值為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知定義在R上的函數(shù)y=f(x)的導函數(shù)為f′(x).若對于任意的x∈R,都有f′(x)>f(x)成立,則滿足不等式f(x)>ex-1f(1)的x的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.平面直角坐標系xOy,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$(t為參數(shù)),圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)).以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求直線l和圓C的極坐標方程;
(2)設直線l和圓C相交于A,B兩點,求弦AB與其所對的劣弧圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{x}^{3}}{3}$-ax.
(1)若x=1是函數(shù)f(x)的極值點,求a的值;
(2)若a>0,求函數(shù)y=f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

同步練習冊答案