5.設(shè)x∈R,若函數(shù)f(x)=ex-ln2,則f′(0)=( 。
A.-ln2B.1-ln2C.4D.1

分析 求函數(shù)的導(dǎo)數(shù),令x=0即可得到結(jié)論.

解答 解:∵f(x)=ex-ln2,
∴f′(x)=ex,
則f′(0)=e0=1,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)的導(dǎo)數(shù)的計(jì)算,根據(jù)導(dǎo)數(shù)公式是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=axe-x+(a-1)lnx,其中a是常數(shù)(e是自然對(duì)數(shù)的底數(shù)),且f(x)在x=1處的切線l方程為ey=1.
(1)寫(xiě)出函數(shù)f(x)的定義域,并求函數(shù)f(x)的單調(diào)區(qū)間和最值;
(2)設(shè)F(x)=xe-x,x∈R,如果x1≠x2,且F(x1)=F(x2),證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在四棱錐P-ABCD中,四條側(cè)棱長(zhǎng)均為2,底面ABCD為正方形,E為PC的中點(diǎn).若異面直線PA與BE所成的角為45°.則該四錐的體積是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過(guò)點(diǎn)$A(-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$,且短軸兩個(gè)頂點(diǎn)與一個(gè)焦點(diǎn)恰好為直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在以原點(diǎn)為圓心的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn)P,Q,且$\overrightarrow{OP}⊥\overrightarrow{OQ}$?若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.△ABC的斜二測(cè)直觀圖△A′B′C′如圖所示,則△ABC的面積為( 。
A.1B.2C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,已知AB⊥平面BCD,M,N分別是AC,AD的中點(diǎn),BC⊥CD.
(1)求證:MN∥平面BCD;
(2)求證:平面ABC⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知點(diǎn)O為三角形ABC內(nèi)一點(diǎn),$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}=\overrightarrow 0$,則$\frac{{{S_{△ABC}}}}{{{S_{△AOC}}}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)是偶函數(shù)的是( 。
A.y=x2,x∈[0,1]B.y=x3C.y=2x2-3D.y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若點(diǎn)P(x,y)在曲線$\left\{{\begin{array}{l}{x=-1+cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù),θ∈R)上,則$\frac{y}{x-1}$的取值范圍是[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案