分析 (1)設(shè)等比數(shù)列{an}的公比q,利用等差數(shù)列的定義和等比數(shù)列的前n項(xiàng)和列出關(guān)于q的方程,通過(guò)解方程求得q的值;然后由等比數(shù)列的定義求得其通項(xiàng)公式;
(2)利用(1)中的通項(xiàng)公式和對(duì)數(shù)函數(shù)的乘法計(jì)算法則求得{bn}的通項(xiàng)公式,然后利用裂項(xiàng)相消法求得數(shù)列{bn}的前n項(xiàng)和Tn.
解答 解:(1)設(shè)等比數(shù)列{an}的公比q,
∵a1=1,
∴S2=1+q,${S_3}=1+q+{q^2}$.
∵2S2-S1=3S3-2S2
∴3q2-q=0.
∵q≠0,
∴$q=\frac{1}{3}$,
∴${a_n}={({\frac{1}{3}})^{n-1}}$.
(2)$\frac{1}{b^n}={log_3}{({\frac{1}{3}})^n}•{log_3}{({\frac{1}{3}})^{n+1}}=n({n+1})$,
∴${b_n}=\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+1}$,
∴Tn=b1+b2+…+bn=$(1-\frac{1}{2})+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n}-\frac{1}{n+1}})$=$1-\frac{1}{n+1}=\frac{n}{n+1}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“裂項(xiàng)求和”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 cm | B. | 8 cm | C. | 10 cm | D. | 12 cm |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 正數(shù) | B. | 負(fù)數(shù) | C. | 零 | D. | 不能確定符號(hào) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -sin x | B. | -cos x | C. | sin x | D. | cos x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com