【題目】設(shè)是圓上的任意一點(diǎn),是過點(diǎn)且與軸垂直的直線,是直線軸的交點(diǎn),點(diǎn)在直線上,且滿足.當(dāng)點(diǎn)在圓上運(yùn)動時,記點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)已知點(diǎn),過的直線交曲線兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.

【答案】(1);(2)見解析

【解析】

(1)設(shè)點(diǎn),由條件的線段比例可得,代入圓的方程中即可得解;

2)設(shè)直線的方程為,與橢圓聯(lián)立得得,設(shè),由 ,結(jié)合韋達(dá)定理代入求解即可.

(1)設(shè)點(diǎn),,因為,點(diǎn)在直線上,

所以.①

因為點(diǎn)在圓上運(yùn)動,所以.②

將①式代入②式,得曲線的方程為.

(2)由題意可知的斜率存在,設(shè)直線的方程為

,得的坐標(biāo)為.

,得.

設(shè),,則有,.③

記直線,的斜率分別為,,

從而,,.

因為直線的方程為,所以,,

所以

.④

把③代入④,得.

,所以,

故直線,的斜率成等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動,且,若動點(diǎn)滿足.

1)求出動點(diǎn)P的軌跡對應(yīng)曲線C的標(biāo)準(zhǔn)方程;

2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過原點(diǎn),求出直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】團(tuán)體購買公園門票,票價如下表:

購票人數(shù)

1~50

51~100

100以上

門票價格

13元/人

11元/人

9元/人

現(xiàn)某單位要組織其市場部和生產(chǎn)部的員工游覽該公園,若按部門作為團(tuán)體,選擇兩個不同的時間分別購票游覽公園,則共需支付門票費(fèi)為1290元;若兩個部門合在一起作為一個團(tuán)體,同一時間購票游覽公園,則需支付門票費(fèi)為990元,那么這兩個部門的人數(shù)之差為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚(yáng)傳統(tǒng)文化,閱讀經(jīng)典名著”活動. 活動后,為了解閱讀情況,學(xué)校統(tǒng)計了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計結(jié)果用莖葉圖記錄如下,乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.

(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;

(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達(dá)人”. 設(shè),現(xiàn)從所有的“閱讀達(dá)人”里任取2人,求至少有1人來自甲組的概率;

(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個閱讀量為10的學(xué)生,并記新得到的甲組閱讀量的方差為,試比較的大小.(結(jié)論不要求證明)

(注:,其中為數(shù)據(jù)的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,(單位:元),得到如圖所示的頻率分布直方圖.

(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點(diǎn)幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓與拋物線的一個公共點(diǎn),且橢圓與拋物線具有一個相同的焦點(diǎn)

(1)求橢圓及拋物線的方程;

(2)設(shè)過且互相垂直的兩動直線與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)當(dāng)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求處的切線方程;

(2)若有且只有兩個整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是邊長為1的正方形,PA⊥底面ABCD,PA1,點(diǎn)M是棱PC上的一點(diǎn),且AMPB

1)求三棱錐CPBD的體積;

2)證明:AM⊥平面PBD

查看答案和解析>>

同步練習(xí)冊答案