20.設(shè)a是實(shí)數(shù),那么|a|<5成立的一個(gè)必要非充分條件是( 。
A.a<5B.|a|<4C.a2<25D.-5<a<5

分析 求出|a|<5的解集,然后結(jié)合必要條件、充分條件及充要條件的判斷方法得答案.

解答 解:由|a|<5,得-5<a<5,
∴a<5是|a|<5成立的一個(gè)必要非充分條件;
|a|<4是|a|<5成立的一個(gè)充分非必要條件;
a2<25與-5<a<5都是|a|<5成立的一個(gè)充要條件.
故選:A.

點(diǎn)評(píng) 本題考查必要條件、充分條件及充要條件的判斷方法,考查絕對(duì)值不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=AD=4,BC=2,若P為線段CD上一點(diǎn),且滿足$\overrightarrow{DP}=λ\overrightarrow{DC}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=5,則$|{\overrightarrow{PA}}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.x2-4x+y2=0的圓心到直線x+$\sqrt{3}$y-4=0的距離是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z=a3-2a+(m+a)i(a≥0,m∈R)的實(shí)部大于虛部,則m的取值范圍為(  )
A.(-∞,-2)B.(-2,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,求:f($\frac{1}{2010}$)+f($\frac{1}{2009}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(2)+…+f(2009)+f(2010)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知點(diǎn)M是直線l:y=$\sqrt{3}$x-4與y軸的交點(diǎn),把直線l繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)60°,求所得直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.正方體ABCD-A1B1C1D1中,連接A1C1,A1B,BC1,AD1,AC,CD1
(1)求證:A1C1∥平面ACD1
(2)求證:平面A1BC1∥平面ACD1;
(3)設(shè)正方體ABCD-A1B1C1D1的棱長為a,求四面體ACB1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知?jiǎng)訄A過定點(diǎn)R(0,2),且在x軸上截得線段MN的長為4,直線l:y=kx+t(t>0)交y軸于點(diǎn)Q.
(1)求動(dòng)圓圓心的軌跡E的方程;
(2)直線l與軌跡E交于A,B兩點(diǎn),分別以A,B為切點(diǎn)作軌跡E的切線交于點(diǎn)P,若|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|sin∠APB=|$\overrightarrow{PQ}$|•|$\overrightarrow{AB}$|.試判斷實(shí)數(shù)t所滿足的條件,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若sinα=$\frac{3}{5}$且α是第二象限角,則$cot({\frac{α}{2}-\frac{π}{4}})$=2.

查看答案和解析>>

同步練習(xí)冊答案