20.若sinα=$\frac{3}{5}$且α是第二象限角,則$cot({\frac{α}{2}-\frac{π}{4}})$=2.

分析 由θ是第二象限角,及sinθ的值,利用同角三角函數(shù)間的基本關(guān)系求出cosθ的值,進(jìn)而確定出tanθ的值,利用二倍角的正切函數(shù)公式化簡,求出tan$\frac{α}{2}$的值,將所求式子利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值化簡,把tan $\frac{α}{2}$的值代入計(jì)算,即可求出值.

解答 解:∵α是第二象限角,且sinα=$\frac{3}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,tanα=-$\frac{3}{4}$,
∴tanα=$\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=-$\frac{3}{4}$,即3tan2$\frac{α}{2}$-8tan$\frac{α}{2}$-3=0,
解得:tan$\frac{α}{2}$=-$\frac{1}{3}$(不合題意,舍去.因?yàn)棣潦堑诙笙藿牵?\frac{α}{2}$是第一象限或第三象限角,tan$\frac{α}{2}$>0)或tan$\frac{α}{2}$=3,
則tan($\frac{α}{2}-\frac{π}{4}$)=$\frac{tan\frac{α}{2}-tan\frac{π}{4}}{1+tan\frac{α}{2}tan\frac{π}{4}}$=$\frac{3-1}{1+3}$=$\frac{1}{2}$.則$cot({\frac{α}{2}-\frac{π}{4}})$=2.
故答案為:2.

點(diǎn)評 此題考查了兩角和與差的正切函數(shù)公式,二倍角的正切函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a是實(shí)數(shù),那么|a|<5成立的一個必要非充分條件是(  )
A.a<5B.|a|<4C.a2<25D.-5<a<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若n是一個三位正整數(shù),且n的個位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”(如137,359,567等).
在某次數(shù)學(xué)活動中,每位參加者需從所有的“三位遞增數(shù)”中隨機(jī)抽取一次,得分規(guī)則如下:若抽取的“三位遞增數(shù)”的三個數(shù)字之積不能被5整除,參加者得0分,若能被5整除,但不能被10整除,得-1分,若能被10整除,得1分.
(Ⅰ)寫出所有個位數(shù)字是5的“三位遞增數(shù)”,并求其發(fā)生的概率;
(Ⅱ)若甲參加活動,求甲得分X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其離心率為$\frac{{\sqrt{3}}}{2}$,且橢圓上一點(diǎn)與橢圓的兩個焦點(diǎn)構(gòu)成的三角形的周長為4+2$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)曲線C的上、下頂點(diǎn)分別為A、B,點(diǎn)P在曲線C上,且異于點(diǎn)A、B,直線AP,BP與直線l:y=-2分別交于點(diǎn)M,N.
(1)設(shè)直線AP,BP的斜率分別為k1,k2,求證:k1k2為定值;
(2)求線段MN長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若等差數(shù)列{4n+1}與等比數(shù)列{3n}的公共項(xiàng)按照原來的順序排成數(shù)列為{an},則a8=98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30分鐘抽取一包,稱其質(zhì)量,分別記下抽查記錄如表(單位:千克):
52514948534849
60654035256560
(1)這種抽樣方法是哪一種抽樣方法?
(2)畫出莖葉圖,并說明哪個車間的產(chǎn)品比較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)向量$\overrightarrow a$=(-2,3),$\overrightarrow b$=(-1,x-1),若$\overrightarrow a$∥$\overrightarrow b$,則x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在四棱錐P-ABCD中,BC∥AD,PA⊥AD,平面PAB⊥平面ABCD,∠BAD=120°,且PA=AB=BC=$\frac{1}{2}$AD=2.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若復(fù)數(shù)(1+ai)2-2i(i為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a=(  )
A.0B.±1C.1D.-1

查看答案和解析>>

同步練習(xí)冊答案