8.復(fù)數(shù)z=a3-2a+(m+a)i(a≥0,m∈R)的實(shí)部大于虛部,則m的取值范圍為( 。
A.(-∞,-2)B.(-2,+∞)C.(-∞,0)D.(0,+∞)

分析 由題意知a3-2a>m+a,a≥0,從而可得m<a3-3a在[0,+∞)上恒成立,令f(x)=x3-3x,求導(dǎo)判斷函數(shù)的單調(diào)性并求最值即可.

解答 解:∵復(fù)數(shù)z=a3-2a+(m+a)i(a≥0,m∈R)的實(shí)部大于虛部,
∴a3-2a>m+a,a≥0,
即m<a3-3a在[0,+∞)上恒成立,
令f(x)=x3-3x,故f′(x)=3x2-3=3(x+1)(x-1),
故f(x)在[0,1)上是減函數(shù),在[1,+∞)上是增函數(shù),
故fmin(x)=f(1)=1-3=-2,
故m<-2,
故選:A.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及復(fù)數(shù)的應(yīng)用,同時(shí)考查了函數(shù)思想與轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=-f(x),則f(2016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:當(dāng)$x∈[{\frac{1}{2},2}]$時(shí),函數(shù)f(x)=x+$\frac{1}{x}>\frac{1}{c}$恒成立.如果p或q為真命題,p且q為假命題,求c的取值范圍( 。
A.$({0,\frac{1}{2}})$B.$[{\frac{1}{2},1}]$C.$({0,\frac{1}{2}}]∪[{1,+∞})$D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知x∈($\frac{3π}{2}$,2π),化簡(jiǎn)arccos(cosx)=2π-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.3-i(i為虛數(shù)單位)是關(guān)于x的方程x2+px+10=0(p∈R)的一個(gè)根,則p=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ex-ax2-2x-1(x∈R).
(I)若f(x)在點(diǎn)(1,f(1))處的切線為l,且直線l在y軸上的截距為-2,求a的值;
(Ⅱ)求證:對(duì)任意實(shí)數(shù)a<0,都有f(x)>$\frac{{a}^{2}-a+1}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)a是實(shí)數(shù),那么|a|<5成立的一個(gè)必要非充分條件是(  )
A.a<5B.|a|<4C.a2<25D.-5<a<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,四棱錐P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是等邊三角形.
(1)證明:PB⊥CD;
(2)求二面角A-PD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其離心率為$\frac{{\sqrt{3}}}{2}$,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為4+2$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)曲線C的上、下頂點(diǎn)分別為A、B,點(diǎn)P在曲線C上,且異于點(diǎn)A、B,直線AP,BP與直線l:y=-2分別交于點(diǎn)M,N.
(1)設(shè)直線AP,BP的斜率分別為k1,k2,求證:k1k2為定值;
(2)求線段MN長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案