15.若n∈N+,且n≥2,求證:$\frac{1}{2}$-$\frac{1}{n+1}$<$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1.

分析 利用放縮法來證明,由n(n-1)<n2<n(n+1),可得$\frac{1}{{n}^{2}}$>$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,然后用疊加法得證.

解答 證明:由n2<n(n+1),
即有$\frac{1}{{n}^{2}}$>$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
則$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$>$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$++…+$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{1}{2}$-$\frac{1}{n+1}$;
由n2>n(n-1),n>1.
即有$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
則$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$++…+$\frac{1}{n-1}$-$\frac{1}{n}$
=1-$\frac{1}{n}$<1.
綜上可得,$\frac{1}{2}$-$\frac{1}{n+1}$<$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1(n≥2).

點評 本題考查不等式的證明,注意運用放縮法,同時還運用了疊加法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A=B={(x,y)|x,y∈R},映射f:A→B,(x,y)→(x+y,x-y),則在映射f下,象(2,1)的原象是( 。
A.($\frac{3}{2}$,-$\frac{1}{2}$)B.($\frac{3}{2}$,$\frac{1}{2}$)C.(3,1)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各點中,與點(1,2)位于直線x+y-1=0的同一側(cè)的是( 。
A.(0,0)B.(-1,1)C.(-1,3)D.(2,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x3-ax2-x+a,其中a為實數(shù),若f(x)在x=-1處取得極值,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知命題p:不等式m2+2m-1≤x+$\frac{1}{x}$對任意x>0恒成立,命題q:指數(shù)函數(shù)y=(5-m2x是增函數(shù).若“p∨q”為真,“p∧q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.a(chǎn)、b、c是兩兩不等的實數(shù),則經(jīng)過P(b,b+c)、C(a,c+a)兩點的直線的傾斜角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)a,b是正實數(shù),且a+b=1,記$x=ab,\;y=({a+\frac{1}{a}})({b+\frac{1}})$.
(1)求y關(guān)于x的函數(shù)關(guān)系式f(x),并求其定義域I;
(2)若函數(shù)g(x)=$\sqrt{k•f(x)-1}$在區(qū)間I內(nèi)有意義,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在x∈[$-\frac{π}{6}$,$\frac{π}{3}$]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC,角A,B,C的對邊分別為a,b,c且a2-c2=b(a-b)且c=$\sqrt{6}$
(1)求角C;   
(2)求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案