分析 (1)利用三角形內(nèi)角和定理和二倍角公式化解后因式分解,即可求解C的大小.
(2)利用余弦定理求解a,b的值,根據(jù)△ABC的面積S=$\frac{1}{2}$absinC求解即可.
解答 解:(1)在△ABC中,由cos2C-3cos(A+B)=1.
可得:2cos2C-1+3cosC=1,即2cos2C+3cosC-2=0
因式分解(2cosC-1)(cosC+2)=0,
得:cosC=$\frac{1}{2}$或cosC=-2(舍去)
∵0<C<π,
∴C=$\frac{π}{3}$.
(2)由(1)可知C=$\frac{π}{3}$,c=$\sqrt{7}$,b=3a,
由余弦定理,得cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$⇒$\frac{1}{2}$=$\frac{{a}^{2}+9{a}^{2}-7}{2×a×3a}$
解得:a=$\sqrt{2}$,則b=3$\sqrt{2}$.
∴△ABC的面積S=$\frac{1}{2}$absinC=$\frac{1}{2}×\sqrt{2}×3\sqrt{2}$×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題主要考查了三角形內(nèi)角和定理和二倍角公式化解能力和因式分解計(jì)算能力,余弦定理的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1-ln10•lgx}{{{x^2}•ln10}}$ | B. | $\frac{1+ln10•lnx}{{{x^2}•ln10}}$ | ||
C. | $\frac{1+ln10•lgx}{x•ln10}$ | D. | $\frac{1-ln10•lgx}{x•ln10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=-sin 2x | B. | f(x)的圖象關(guān)于x=-$\frac{π}{3}$對(duì)稱 | ||
C. | f($\frac{7π}{3}$)=$\frac{1}{2}$ | D. | f(x)的圖象關(guān)于(1,0)對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 30 | C. | 25 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1]∪[3,+∞) | B. | (-∞,-1]∪[2,+∞) | C. | (-∞,-3]∪[1,+∞) | D. | (-∞,-2]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com