分析 (1)f(x)=$\frac{{2}^{x}+1}{{2}^{x+1}-a}$是奇函數(shù),f(-1)=-f(1),再進(jìn)行驗(yàn)證即可得出結(jié)論;
(2)根據(jù)函數(shù)單調(diào)性的定義,利用定義法即可得到結(jié)論.
解答 解:(1)∵f(x)=$\frac{{2}^{x}+1}{{2}^{x+1}-a}$是奇函數(shù),
∴f(-1)=-f(1),
∴$\frac{\frac{3}{2}}{1-a}=-\frac{3}{4-a}$,
∴a=2,此時(shí)滿足f(-x)=-f(x);
(2)函數(shù)y=f(x)在(0,+∞)上單調(diào)遞減.
設(shè)x1>x2>0,
則f(x1)-f(x2)=$\frac{{2}^{{x}_{1}}-{2}^{{x}_{2}}}{({2}^{{x}_{1}+1}-2)({2}^{{x}_{2}+1}-2)}$>0,
即f(x1)-f(x2)<0
∴f(x1)<f(x2),即函數(shù)y=f(x)在(0,+∞)上單調(diào)遞減.
點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性,考查函數(shù)單調(diào)性的判斷和證明,利用定義法是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=\sqrt{x^2}\;\;,\;\;g(x)=x$ | B. | $f(x)=\sqrt{x^2}\;,\;\;g(t)=\left\{\begin{array}{l}t,t≥0\\-t,t<0\end{array}\right.$ | ||
C. | $f(x)=\root{3}{x^3}\;\;,\;\;g(x)=|x|$ | D. | $f(t)=t\;,\;\;g(x)=\frac{x^2}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{11π}{12}$ | B. | $\frac{5π}{6}$ | C. | $\frac{3π}{4}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | $\frac{5}{6}$ | C. | $\frac{4}{5}$ | D. | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com