20.若函數(shù)f(x)=x${\;}^{\frac{1}{3}}$+log${\;}_{\frac{1}{3}}$x,則f(27)等于(  )
A.2B.1C.-1D.0

分析 直接利用函數(shù)的解析式,代入求解即可.

解答 解:函數(shù)f(x)=x${\;}^{\frac{1}{3}}$+log${\;}_{\frac{1}{3}}$x,則f(27)=27${\;}^{\frac{1}{3}}$+log${\;}_{\frac{1}{3}}$27=3-3=0,
故選:D.

點評 本題考查函數(shù)在的求法,指數(shù)與對數(shù)運算法則的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-lnx+a-1,g(x)=$\frac{x^2}{2}$+ax-xlnx,其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當x≥1時,g(x)的最小值大于$\frac{3}{2}$-lna,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若C252x=C25x+4,則x的值為( 。
A.4B.7C.4或7D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=1-$\sqrt{x+1}$,g(x)=ln(ax2-3x+1),若對任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實數(shù)a的最大值為(  )
A.2B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計算
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-(${\frac{49}{9}}$)0.5+(0.008)${\;}^{-\frac{2}{3}}}$×$\frac{2}{25}$;
(2)lg25+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=4x2+kx-1在區(qū)間[1,2]上是單調(diào)函數(shù),則實數(shù)k的取值范圍是( 。
A.(-∞,-16]∪[-8,+∞)B.[-16,-8]C.(-∞,-8)∪[-4,+∞)D.[-8,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算:$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4;
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=1$的漸近線方程為y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=$\frac{{2}^{x}+1}{{2}^{x+1}-a}$是奇函數(shù).
(1)求a的值;
(2)判斷并證明f(x)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案