精英家教網 > 高中數學 > 題目詳情

【題目】某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿400元的顧客,將獲得一次摸獎機會,規(guī)則如下:獎盒中放有除顏色外完全相同的1個紅球,1個黃球,1個白球和1個黑球.顧客不放回的每次摸出1個球,若摸到黑球則停止摸獎,否則就繼續(xù)摸球.規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.

1)求1名顧客摸球2次停止摸獎的概率;

2)記1名顧客5次摸獎獲得的獎金數額,求隨機變量的分布列和數學期望.

【答案】1;

2)隨機變量的分布列為:



10

20

30

40







.

【解析】

試題(1)這屬于一個古典概型問題,可以考慮摸2次,總的方法數為,而摸2次后停止摸獎,說明第一次不是黑球,而第2次摸的是黑球,有種可能,因此所求概率為;(2)因為是不放回的摸球,因此得獎金額可能為0元、10元、20元、30元、40元,這樣隨機變量的分布列就要求出,獎金0元,說明第1次摸的是黑球,獎金10元說明第一次摸的是拍球或黃球,第2次黑球,獎金20元,說明第1次紅球,第2次黑球或第1、第2次是白球或黃球,第3次黑球,獎金30元,第1次與第2次里有1次是紅球,另一次為白球或黃球,第3次黑球,而獎金40元說明第4次是黑球,由上可計算出名概率計算出分布列,期望.

試題解析:(1)設“1名顧客摸球2次停止摸獎為事件,

,(4分)

1名顧客摸球2次停止摸獎的概率

2)隨機變量的所有取值為

,,

9分)

所以,隨機變量的分布列為:



10

20

30

40







12分)

.(14分)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數在點處切線的斜率為4,求實數的值;

(2)求函數的單調區(qū)間;

(3)若函數上是減函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】臨近開學季,某大學城附近的一款網紅書包銷售火爆,其成本是每件15元.經多數商家銷售經驗,這款書包在未來1個月(按30天計算)的日銷售量(個)與時間(天)的關系如下表所示:

時間(/天)

1

4

7

11

28

日銷售量(/個)

196

184

172

156

88

未來1個月內,前15天每天的價格(元/個)與時間(天)的函數關系式為(且為整數),后15天每天的價格(元/個)與時間(天)的函數關系式為(且為整數).

1)認真分析表格中的數據,用所學過的一次函數、反比例函數的知識確定一個滿足這些數據(個)與(天)的關系式;

2)試預測未來1個月中哪一天的日銷售利潤最大,最大利潤是多少?

3)在實際銷售的第1周(7天),商家決定每銷售1件商品就捐贈元利潤給該城區(qū)養(yǎng)老院.商家通過銷售記錄發(fā)現,這周中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,,底面ABCD是邊長為2的菱形,點E,F分別為棱DCBC的中點,點G是棱SC靠近點C的四等分點.

求證:(1)直線平面EFG

2)直線平面SDB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱錐中,兩兩垂直,,分別是的中點.

1)證明:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求證:平面AEC⊥平面ABE

(2)FBE上.若DE∥平面ACF,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱錐中,兩兩垂直,,分別是的中點.

1)證明:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱椎中,四邊形為菱形,,,,分別為,中點..

1)求證:;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fxx2﹣(6+ax+2alnxaR).

1)討論fx)的單調性;

2)函數gxx2+2a4lnx1,若存在x0[1e],使得fx0)<gx0)成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案