已知平面向量
=(1,2),
=(-1,m),如果
⊥
,那么實數(shù)m等于( 。
解答:解:∵
⊥
,∴
•=0.
∴-1×1+2m=0,解得m=
.
故選:B.
點評:本題考查了
⊥
?
•=0,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知平面向量
=(-1,3x),平面向量
=(2,6).若
與
平行,則實數(shù)x=( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知平面向量
=(1,2sinθ),
=(5cosθ,3).
(1)若
∥
,求sin2θ的值;
(2)若
⊥
,求tan(θ+
)的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知平面向量
=(1,-3),
=(4,-2),λ
+
與
垂直,則λ=( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知平面向量
=(1,-2),
=(2,1),
=(-4,-2),則下列說法中錯誤的是( 。
A、∥ |
B、⊥ |
C、對同一平面內(nèi)的任意向量,都存在一對實數(shù)k1,k2,使得=k1+k2 |
D、向量與向量-的夾角為45° |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知平面向量
=(1,-2),
=(2,1),
=(-4,-2),則下列結(jié)論中錯誤的是( 。
A、向量與向量共線 |
B、若=λ1+λ2(λ1,λ2∈R),則λ1=0,λ2=-2 |
C、對同一平面內(nèi)任意向量,都存在實數(shù)k1,k2,使得=k1+k2 |
D、向量在向量方向上的投影為0 |
查看答案和解析>>