設(shè)
sinα+cosα
sinα-cosα
=2,則tan(α+
π
4
)=
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,兩角和與差的正切函數(shù)
專(zhuān)題:三角函數(shù)的求值
分析:由已知可得tanα=3,用兩角和的正切公式化簡(jiǎn)后代入即可求值.
解答: 解:∵
sinα+cosα
sinα-cosα
=2,
∴cosα≠0,
tanα+1
tanα-1
=2,解得tanα=3,
∴tan(α+
π
4
)=
tanα+1
1-tanα
=-2,
故答案為:-2.
點(diǎn)評(píng):本題主要考察了同角三角函數(shù)基本關(guān)系的運(yùn)用,兩角和與差的正切函數(shù)公式的應(yīng)用,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2
-2
max{x,x2}dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1+a2+a3+…+a9=36,則a22+a52+a82的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1+sinx
cosx
=-
1
2
,則
cosx
sinx-1
的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
mx2-2x+1
的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是(  )
A、(0,1)
B、(1,+∞)
C、[0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log3
π
3
-arccos(2-x))的定義域?yàn)?div id="qgmuu8w" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某汽車(chē)生產(chǎn)企業(yè)上年度生產(chǎn)一品牌汽車(chē)的投入成本為10萬(wàn)元/輛,出廠價(jià)為13萬(wàn)元/輛.本年度為適應(yīng)市場(chǎng)需求,計(jì)劃提高產(chǎn)品檔次,適當(dāng)增加投入成本,若每輛車(chē)投入成本增加的比例為x(0<x<1),則出廠價(jià)相應(yīng)的提高比例為0.7x,
年銷(xiāo)售量也相應(yīng)增加,年銷(xiāo)售量y關(guān)于x的函數(shù)為y=3240(-x2+2x+
5
3
),則當(dāng)x為何值時(shí),本年度的年利潤(rùn)最大?最大利潤(rùn)為多少(年利潤(rùn)=(每輛車(chē)的出廠價(jià)-每輛車(chē)的投入成本)×年銷(xiāo)售量)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)的圖象與y=x2-4x+8圖象關(guān)于M(1,2)對(duì)稱(chēng),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間四邊形ABCD中,AB=AD,BC=CD,則對(duì)角線BD與AC所成的角的大小為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案