已知空間四邊形ABCD中,AB=AD,BC=CD,則對角線BD與AC所成的角的大小為
 

考點:異面直線及其所成的角
專題:空間位置關系與距離
分析:取BD中點O,連結AO,CO,由已知得AO⊥BD,CO⊥BD,從而BD⊥平面AOC,由此能求出對角線BD與AC所成的角的大小.
解答: 解:取BD中點O,連結AO,CO,
∵AB=AD,BC=CD,
∴AO⊥BD,CO⊥BD,
又AO∩CO=O,
∴BD⊥平面AOC,
∵AC?平面AOC,∴BD⊥AC,
∴對角線BD與AC所成的角的大小為90°.
故答案為:90°.
點評:本題考查對角線BD與AC所成的角的大小的求法,是基礎題,解題時要注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

sinα+cosα
sinα-cosα
=2,則tan(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對任意實數(shù)x,有f(-x)=-f(x),且當x>0時,有f′(x)>0,則當x<0時,有( 。
A、f'(x)≥0
B、f'(x)>0
C、f'(x)≤0
D、f'(x)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:3x-4y+2=0,A(2,-3)B(1,0)
(1)設過A于l平行的直線為m,過B于l垂直的直線為n,求兩直線方程
(2)若⊙C與l,m,n三直線都相切,且過坐標原點,求圓的方程
(3)若x,y滿足圓C方程,求下列代數(shù)式的取值范圍
y-2
x
,x2+y2+2x+2,3x+4y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱柱ABC-A1B1C1中,D是AC的中點,AB1⊥BC1,則平面DBC1與平面CBC1所構成的角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知國家某5A級大型景區(qū)對每日游客數(shù)量擁擠等級規(guī)定如表:
游客數(shù)量(百人) 0~50 51~100 101~150 151~200 201~300>300
擁擠等級優(yōu)輕度擁擠中度擁擠重度擁擠嚴重擁擠
該景區(qū)對3月份的游客量作出如圖的統(tǒng)計數(shù)據(jù):

(I)某人3月份連續(xù)2天到該景區(qū)游玩,求這2天他遇到的游客擁擠等級均為良的概率;
(Ⅱ)從該景區(qū)3月份游客人數(shù)低于10 000人的天數(shù)中隨機選取3天,記這3天游客擁擠等級為優(yōu)的天數(shù)為ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線y=f(x)在點(x0,f(x0))處的切線方程為3x+y+5=0,則( 。
A、f′(x0)>0
B、f′(x0)<0
C、f′(x)=0
D、f′(x0)不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正三棱錐P-ABC中,∠APB=∠BPC=∠CPA=90°,PA=PB=PC=a,AB的中點M,一小蜜蜂沿錐體側面由M 爬到C點,最短路程是( 。
A、
10
2
a
B、
3
2
a
C、
1
2
(2+
2
a)
D、
1
2
(1+
5
)a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校高三某班的一次測試成績的莖葉圖、頻率分布直方圖及頻率分布表中的部分數(shù)據(jù)如下,請據(jù)此解答如下問題:
分組頻數(shù)頻率
[50,60)0.08
[60,70)7
[70,80)10
[80,90)
[90,100]2
(1)求班級的總人數(shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補充完整;
(3)用頻率分布直方圖求該班的平均分的估計值.

查看答案和解析>>

同步練習冊答案