分析 (1),根據(jù)向量平行,得到sin(θ+$\frac{π}{3}$)=0,結合θ的范圍,求出即可;(2)根據(jù)向量的運算得到$\sqrt{3}$sinθ-cosθ=0,求出|$\overrightarrow{a}$+$\overrightarrow$|的值即可.
解答 解:(1)∵$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{a}$∥$\overrightarrow$,
∴-$\frac{1}{2}$sinθ=$\frac{\sqrt{3}}{2}$cosθ,
∴sin(θ+$\frac{π}{3}$)=0,θ∈(0,π),
∴θ=$\frac{2π}{3}$;
(2)若|3$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-3$\overrightarrow$|,
則${(3cosθ-\frac{1}{2})}^{2}$+${(3sinθ+\frac{\sqrt{3}}{2})}^{2}$=${(cosθ+\frac{3}{2})}^{2}$+${(sinθ-\frac{3\sqrt{3}}{2})}^{2}$,
整理得:$\sqrt{3}$sinθ-cosθ=0,
|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{{(cosθ-\frac{1}{2})}^{2}{+(sinθ+\frac{\sqrt{3}}{2})}^{2}}$=$\sqrt{2+\sqrt{3}sinθ-cosθ}$=$\sqrt{2}$.
點評 本題考查了向量的平行的性質,考查向量的運算,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
用水量(噸) | 單價(元/噸) | 注 |
0~20(含) | 2.5 | |
20~35(含) | 3 | 超過20噸不超過35噸的部分按3元/噸收費 |
35以上 | 4 | 超過35噸的部分按4元/噸收費 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,2] | B. | [0,1] | C. | [0,+∞) | D. | [2,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ② | B. | ①③ | C. | ②④ | D. | ③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $\frac{1}{4}$ | C. | 3 | D. | 4 或$\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com