10.已知α,β是兩個相交平面,若點A既不在α內(nèi),也不在β內(nèi),則過點A且與α,β都平行的直線的條數(shù)為( 。
A.0B.1C.2D.3

分析 設(shè)α∩β=l,過點A作m∥l,l存在且唯一.可得l∥α,l∥β,即可得出.

解答 解:設(shè)α∩β=l,
過點A作m∥l,l存在且唯一.
∵點A既不在α內(nèi),也不在β內(nèi),
∴l(xiāng)∥α,l∥β,
∴過A且與α,β都平行的直線的條數(shù)為1.
故選:B.

點評 本題考查了空間位置關(guān)系、線面平行的判定與性質(zhì)定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分圖象如圖所示,則f(x)=sin($\frac{π}{4}$x+$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.下面的表述:
①6=p;   ②a=3×5+2;   ③b+3=5;   ④p=((3x+2)-4)x+3;⑤a=a3;  ⑥x,y,z=5;   ⑦ab=3;     ⑧x=y+2+x.其中是賦值語句的序號有②④⑤⑧.(注:要求把正確的表述全填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若loga$\frac{1}{4}$=-2,則a=(  )
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若函數(shù)f(x)=ax2+2x是奇函數(shù),則f($\frac{1}{2}$)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設(shè)向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$);
(1)若$\overrightarrow{a}$∥$\overrightarrow$,且θ∈(0,π),求θ;
(2)若|3$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-3$\overrightarrow$|,求|$\overrightarrow{a}$+$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知直線方程為$|\begin{array}{l}{x}&{y}&{1}\\{3}&{5}&{1}\\{-2}&{3}&{1}\end{array}|$=0,則下列各點不在這條直線上的是( 。
A.(-2,3)B.(4,7)C.(3,5)D.(0.5,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)函數(shù)y=x3與y=($\frac{1}{2}$)x的圖象的交點為(x0,y0),若x0所在的區(qū)間是(k,k+1)(k∈Z),則k=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{x}$+x.
(1)判斷并證明f(x)的奇偶性;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上為增函數(shù);
(3)求函數(shù)f(x)在區(qū)間[1,3]的最值.

查看答案和解析>>

同步練習冊答案