分析 (1)an+1=2an-n+1,可得an+1-(n+1)=2(an-n),即bn+1=2bn.即可證明.
(2)由(1)可得:bn=an-n=2n.可得${c_n}=\frac{{{a_n}-n}}{{({{b_n}+1})({{b_{n+1}}+1})}}$=$\frac{{2}^{n}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$.利用裂項求和方法、數(shù)列的單調(diào)性即可證明.
解答 證明:(1)∵an+1=2an-n+1,∴an+1-(n+1)=2(an-n),即bn+1=2bn.
∵a1-1=2,∴{an-n}是以2為首項,2為公比的等比數(shù)列.
(2)由(1)可得:bn=an-n=2n.
∴${c_n}=\frac{{{a_n}-n}}{{({{b_n}+1})({{b_{n+1}}+1})}}$=$\frac{{2}^{n}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$.
∴Tn=$(\frac{1}{2+1}-\frac{1}{{2}^{2}+1})$+$(\frac{1}{{2}^{2}+1}-\frac{1}{{2}^{3}+1})$+…+$(\frac{1}{{2}^{n}+1}-\frac{1}{{2}^{n+1}+1})$
=$\frac{1}{3}-\frac{1}{{2}^{n+1}+1}$$<\frac{1}{3}$.
點評 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的定義通項公式、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$-1 | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{3-2\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 12 | C. | 18 | D. | 32 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com