【題目】下面是某市環(huán)保局連續(xù)30天對(duì)空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù):
61 76 70 56 81 91 55 91 75 81
88 67 101 103 57 91 77 86 81 83
82 82 64 79 86 85 75 71 49 45
(1)完成下面的頻率分布表;
(2)完成下面的頻率分布直方圖,并寫(xiě)出頻率分布直方圖中的值;
(3)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間內(nèi)的概率.
分組 | 頻數(shù) | 頻率 |
[41,51) | 2 | |
[51,61) | 3 | |
[61,71) | 4 | |
[71,81) | 6 | |
[81,91) | ||
[91,101) | 3 | |
[101,111) |
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)
【解析】
(1)根據(jù)已知條件中的數(shù)據(jù),得到頻數(shù),計(jì)算求得對(duì)應(yīng)頻率,從而補(bǔ)全頻率分布表;(2)根據(jù)頻率分布表求得頻率分布直方圖缺失的矩形的高,從而補(bǔ)全圖形;再根據(jù)的頻率計(jì)算得到矩形的高;(3)列出所有基本事件,找到符合題意的基本事件個(gè)數(shù),利用古典概型求出結(jié)果.
(1)需補(bǔ)全的數(shù)據(jù)如下圖所示:
分組 | 頻數(shù) | 頻率 |
(2)補(bǔ)全頻率分布直方圖,如下圖所示:
由已知,空氣質(zhì)量指數(shù)在區(qū)間的頻率為
(3)設(shè)表示事件“在本月空氣質(zhì)量指數(shù)大于等于的這些天中隨機(jī)選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間內(nèi)”
由已知得:質(zhì)量指數(shù)在區(qū)間內(nèi)的有天,記這三天分別為
質(zhì)量指數(shù)在區(qū)間內(nèi)的有天,記這兩天分別為
則選取的所有可能結(jié)果為:,,,,,,,,,,即基本事件數(shù)為
事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間內(nèi)”的可能結(jié)果為:
,,,,,,,,
基本事件數(shù)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正四棱錐S-ABCD中,O為頂點(diǎn)在底面內(nèi)的投影,P為側(cè)棱SD的中點(diǎn),且SO=OD,則直線BC與平面PAC的夾角是
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校調(diào)查了20個(gè)班中有網(wǎng)上購(gòu)物經(jīng)歷的人數(shù),得到了如圖所示的莖葉圖,以為分組,作出這組數(shù)的頻率分布直方圖,并說(shuō)明頻率分布直方圖與莖葉圖之間的關(guān)系.
0 1 2 3 | 7 3 7 6 4 4 3 0 7 5 5 4 3 2 0 8 5 4 3 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)(),若的解集是.
(1)求的值;
(2)若關(guān)于的不等式有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面幾種推理是類比推理的( )
A. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果和是兩條平行直線的同旁內(nèi)角,則
B. 由平面三角形的性質(zhì),推測(cè)空間四邊形的性質(zhì)
C. 某校高二級(jí)有20個(gè)班,1班有51位團(tuán)員,2班有53位團(tuán)員,3班有52位團(tuán)員,由此可以推測(cè)各班都超過(guò)50位團(tuán)員.
D. 一切偶數(shù)都能被2整除,是偶數(shù),所以能被2整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了適應(yīng)市場(chǎng)需求對(duì)產(chǎn)品結(jié)構(gòu)做了重大調(diào)整,調(diào)整后初期利潤(rùn)增長(zhǎng)迅速,之后增長(zhǎng)越來(lái)越慢,若要建立恰當(dāng)?shù)暮瘮?shù)模型來(lái)反映該公司調(diào)整后利潤(rùn)與時(shí)間的關(guān)系,可選用
A.一次函數(shù)B.二次函數(shù)
C.指數(shù)型函數(shù)D.對(duì)數(shù)型函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)橢圓的右頂點(diǎn)、下頂點(diǎn)和上頂點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)直線經(jīng)過(guò)點(diǎn)且與垂直,是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)作圓的切線,切點(diǎn)分別為,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列函數(shù)的奇偶性:
(1)f(x)=x+1;
(2)f(x)=x3+3x,x∈[-4,4);
(3)f(x)=|x-2|-|x+2|;
(4)f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com