【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問(wèn)題.
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 8 | 0.16 |
第2組 | [60,70) | a | ■ |
第3組 | [70,80) | 20 | 0.40 |
第4組 | [80,90) | ■ | 0.08 |
第5組 | [90,100] | 2 | b |
合計(jì) | ■ | ■ |
(1)求出a,b的值;
(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng).
①求所抽取的2名同學(xué)中至少有1名同學(xué)來(lái)自第5組的概率;
②求所抽取的2名同學(xué)來(lái)自同一組的概率.
【答案】(1) ;(2)①. ;②. .
【解析】試題分析:(1)樣本總?cè)藬?shù)50,所以b=0.04,a=16;(2)①通過(guò)窮舉解得P(E)==;②通過(guò)窮舉解得P(F)=。
試題解析:
(1)由題意可知,樣本總?cè)藬?shù)為=50,∴b==0.04,又50×0.08=4,∴a=50-8-20-4-2=16.
(2)①由題意可知,第4組共有4人,記為A,B,C,D,第5組共有2人,記為X,Y.
從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)有AB,AC,AD,BC,BD,CD,AX,AY,BX,BY,CX,CY,DX,DY,XY共15種情況.
設(shè)“隨機(jī)抽取的2名同學(xué)中至少有1名同學(xué)來(lái)自第5組”為事件E,
有AX,AY,BX,BY,CX,CY,DX,DY,XY,共9種情況,
所以P(E)==,
即隨機(jī)抽取的2名同學(xué)中至少有1名同學(xué)來(lái)自第5組的概率是.
②設(shè)“隨機(jī)抽取的2名同學(xué)來(lái)自同一組”為事件F,有AB,AC,AD,BC,BD,CD,XY,共7種情況.
所以P(F)=,即隨機(jī)抽取的2名同學(xué)來(lái)自同一組的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面四個(gè)推理中,屬于演繹推理的是( 。
A. 觀察下列各式:72=49,73=343,74=2401,…,則72015的末兩位數(shù)字為43
B. 觀察,可得偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù)
C. 在平面上,若兩個(gè)正三角形的邊長(zhǎng)比為1:2,則它們的面積比為1:4,類(lèi)似的,在空間中,若兩個(gè)正四面體的棱長(zhǎng)比為1:2,則它們的體積之比為1:8
D. 已知堿金屬都能與水發(fā)生還原反應(yīng),鈉為堿金屬,所以鈉能與水發(fā)生反應(yīng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題分)
如圖, 和所在的平面互相垂直,且, .
(Ⅰ)求證: .
(Ⅱ)求直線與面所成角的大小的正弦值.
(Ⅲ)求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù), ).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)函數(shù)有兩個(gè)零點(diǎn)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)己知函數(shù)f(x)=
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求證:當(dāng)x∈(0,1)時(shí),f(x)>2
(3)設(shè)實(shí)數(shù)k使得f(x)>k對(duì)x∈(0,1)恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的多面體中, 平面, , , , , , , 是的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn), , 是橢圓上的點(diǎn),且,設(shè)動(dòng)點(diǎn)滿足.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),求三角形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的上、下、左、右四個(gè)頂點(diǎn)分別為x軸正半軸上的某點(diǎn)滿足.
(1)求橢圓的方程;
(2)設(shè)該橢圓的左、右焦點(diǎn)分別為,點(diǎn)在圓上,且在第一象限,過(guò)作圓的切線交橢圓于,求證:△的周長(zhǎng)是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,放置的邊長(zhǎng)為1的正方形PABC沿x軸滾動(dòng),點(diǎn)B恰好經(jīng)過(guò)原點(diǎn).設(shè)頂點(diǎn)P(x,y)的軌跡方程是y=f(x),則對(duì)函數(shù)y=f(x)有下列判斷:
①若-2≤x≤2,則函數(shù)y=f(x)是偶函數(shù);
②對(duì)任意的x∈R,都有f(x+2)=f(x-2);
③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞減;
④函數(shù)y=f(x)在區(qū)間[4,6]上是減函數(shù).
其中判斷正確的序號(hào)是________.(寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com